
Rethinking the Vulnerability of DNNWatermarking: Are
Watermarks Robust against Naturalness-aware Perturbations?

Run Wang∗†
Wuhan University

Wuhan, Hubei, China
wangrun@whu.edu.cn

Haoxuan Li†
Wuhan University

Wuhan, Hubei, China
haoxuanli@whu.edu.cn

Lingzhou Mu†
Wuhan University

Wuhan, Hubei, China
mlzmlz@whu.edu.cn

Jixing Ren†
Wuhan University

Wuhan, Hubei, China
2017301500283@whu.edu.cn

Shangwei Guo
Chongqing University

Chongqing, Chongqing, China
swguo@cqu.edu.cn

Li Liu‡
Fudan University

Shanghai, Shanghai, China
liuli@fudan.edu.cn

Liming Fang§
Nanjing University of Aeronautics

and Astronautics
Nanjing, Jiangsu, China
fangliming@nuaa.edu.cn

Jing Chen†
Wuhan University

Wuhan, Hubei, China
chenjing@whu.edu.cn

Lina Wang†¶
Wuhan University

Wuhan, Hubei, China
lnwang@whu.edu.cn

ABSTRACT
Training Deep Neural Networks (DNN) is a time-consuming pro-
cess and requires a large amount of training data, which motivates
studies working on protecting the intellectual property (IP) of DNN
models by employing various watermarking techniques. Unfortu-
nately, in recent years, adversaries have been exploiting the vulner-
abilities of the employed watermarking techniques to remove the
embedded watermarks. In this paper, we investigate and introduce
a novel watermark removal attack, called AdvNP, against all the
existing four different types of DNN watermarking schemes via
input preprocessing by injecting Adversarial Naturalness-aware
Perturbations. In contrast to the prior studies, our proposed method
is the first work that generalizes all the existing four watermarking
schemes well without involving any model modification, which
preserves the fidelity of the target model. We conduct the experi-
ments against four state-of-the-art (SOTA) watermarking schemes
on two real tasks (e.g., image classification on ImageNet, face recog-
nition on CelebA) across multiple DNN models. Overall, our pro-
posed AdvNP significantly invalidates the watermarks against the
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four watermarking schemes on two real-world datasets, i.e., 60.9%
on the average attack success rate and up to 97% in the worse
case. Moreover, our AdvNP could well survive the image denoising
techniques and outperforms the baseline in both the fidelity pre-
serving and watermark removal. Furthermore, we introduce two
defense methods to enhance the robustness of DNN watermarking
against our AdvNP. Our experimental results pose real threats to
the existing watermarking schemes and call for more practical and
robust watermarking techniques to protect the copyright of pre-
trained DNN models. The source code and models are available at
https://github.com/GitKJ123/AdvNP.

CCS CONCEPTS
• Security and privacy→ Human and societal aspects of se-
curity and privacy; • Information systems → Multimedia
information systems; • Computing methodologies→ Artifi-
cial intelligence.
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1 INTRODUCTION
In recent years, DNNs have achieved tremendous success in many
cutting-edge fields [33], such as image classification [22], speech
recognition [37], and natural language processing [15], etc.. How-
ever, training DNN models is time-consuming and computationally

1808

https://doi.org/10.1145/3503161.3548390
https://github.com/GitKJ123/AdvNP/
https://doi.org/10.1145/3503161.3548390
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3503161.3548390&domain=pdf&date_stamp=2022-10-10


MM ’22, October 10–14, 2022, Lisboa, Portugal. Run Wang et al.

Table 1: Comparison with the existing three popular DNN watermarking
attacks in terms of whether it requires the knowledge of training dataset, the
type of trigger, the employed watermarking technique, watermark invertible,
and the white-box setting. The row fine-tuning represents the watermark
removal attack via model fine-tuning. The second column denotes the training
dataset, the last column indicates whether the attack should work in the white-
box setting. The symbol ✔indicates the attack needs such an assumption and
✘represents the contrary. For the ambiguity attack, the performance will be
significantly improved in the white-box setting.

Attack type Train. Data. Trigger Technique Invertible White-box

Detection Attack [3] ✘ ✔ ✔ ✘ ✘
Fine-tuning [26] ✔ ✘ ✔ ✘ ✘

Ambiguity Attack [16] ✘ ✘ ✘ ✔ ✔
AdvNP ✘ ✘ ✘ ✘ ✘

expensive. For example, according to a report released by OpenAI,
it costs more than 4.6 million dollars to train the GPT-3 [7] (a pow-
erful language model) once and the total cost could be more than
12 million dollars. Some leading vendors, like Amazon, tend to sell
the pre-trained models to users, like selling traditional software for
making profits, which is becoming a viable and lucrative business
model. Thus, there is an urgent need to protect the production-level
well-trained models from being illegally copied, redistributed, or
even misused. Recently, the community is employing the water-
marking to verify the ownership of DNN models by carefully craft-
ing sample-label pairs via data poisoning attack [2, 34, 39, 43, 46].
However, the prior studies have demonstrated that the existing
DNN watermarking techniques are vulnerable to various attacks
which involving watermark corruption, for instance removal attack
[4, 12], ambiguity attack [16, 31]. In this paper, we investigate that
the existing DNN watermarking techniques are also vulnerable
to a novel watermark removal attack via input preprocessing by
injecting naturalness-aware perturbations, to disrupt embedded
watermarks without compromising the functionalities, instead of
introducing the model modification like the model fine-tuning and
pruning in prior watermark removal attack.

Actually, DNN watermarking borrows the idea from digital me-
dia watermarking [32], which embeds visually visible or invisible
watermarks in the digital media for ownership verification. In DNN
watermarking, the two mainstream ideas are feature-based DNN
watermarking [11, 13, 39] and trigger-based DNN watermarking
[2, 24, 46]. Here, we introduce them briefly. ❶ Feature-based DNN
watermarking embeds watermarks into the parameters of DNN
models without sacrificing performance. However, it requires white-
box access in the ownership verification, which is not practical in
the real-world scenario. In this paper, we do not consider these
types of watermarking techniques, which are beyond the scope of
this paper. ❷ Trigger-based DNN watermarking employs adver-
sarial training samples with pre-defined input and corresponding
specified labels to enforce that the model could learn this pattern for
verification purposes. This simple protocol of checking the verifica-
tion sample and model prediction output has attracted the interest
of the community for DNN model ownership verification. However,
the robustness of existing watermarking techniques is largely chal-
lenged by recent studies, where the adversaries could bypass the
watermark verification samples by exploiting the vulnerabilities of
watermarking techniques [12, 26].

A number of studies are working on exploring the vulnerability
of DNN watermarking techniques [35, 40, 42, 45]. Table 1 presents
the comparison of prior attacks (e.g., detection attack, removal

attack via fine-tuning, and ambiguity attack) against DNN water-
marking with our proposed method, AdvNP. More details of the
prior three attacks are elaborated in Section 2.2. Here, we mainly
present the weaknesses of them which limit their practical usage
in real scenarios, ❶ the detection attack has a poor generalization
capability when the knowledge of triggers is unavailable [3], ❷

the removal attack via fine-tuning needs to obtain the knowledge
of training dataset samples or the knowledge of watermarking
techniques to achieve a competitive attack success rate [26, 36], ❸
the ambiguity attack requires the watermarking scheme to be in-
vertible [16]. Compared with the three aforementioned attacks, our
AdvNP does not need any knowledge of the watermarking schemes,
the original training datasets, or introducing any modification of
model parameters/weights, thus practically deployable in the real
world scenario.

In exploring the vulnerabilities of watermarking techniques, a
practical attack against DNN watermarking need to satisfy the
following three basic requirements.

• First of all, the attack should satisfy functionality-preserving
requirement. The embedded watermarks should not introduce
degradation to the prediction of benign samples.

• Following black-box manner, the adversary can not obtain any
knowledge of target model (e.g. watermarking techniques, train-
ing dataset) for its practical deployment in real-world purposes.

• The attack should be general to all the existing watermarking
schemes, especially the most promising semantic-based water-
marking techniques which is a stealthy watermarking technique
and rarely evaluated in recent studies.

In this paper, we propose a novel watermark removal attack
by injecting naturalness-aware perturbations which satisfy all the
aforementioned requirements and pose a real threat to the appli-
cation of DNN watermarking in protecting the copyright of pre-
trained models. Specifically, we devise a simple yet effective method
to disclose the existence and effectiveness of our proposed method
by injecting adversarial relighting perturbations. The key insight
of our method is that the visible/ invisible trigger mostly drawn from
a disparate distribution and the watermarks with such trigger by
learning specified labels are more vulnerable to naturalness-aware
perturbations when suffering the perturbations with the same magni-
tudes. Specifically, this is the very first work that bypasses all the
existing watermarking techniques successfully without involving
any model modification. Figure 1 illustrates how to inject relighting
perturbations to mislead the watermark verification in total black-
box settings without compromising the functionality in predicting
benign samples.

To comprehensively evaluate the effectiveness and robustness
of our proposed method, we evaluate the effectiveness of AdvNP
against four existing watermarking schemes (e.g., pattern-based,
adversarial perturbation-based, OOD-based, and semantic-based),
and investigate the robustness against the image denoisingmethod.
Experimental results have demonstrated that our method achieves
an average attack success rate more than 65.3% on CelbeA for
face recognition and 56.5% on ImageNet for image classification
against the fourwatermarking techniques. Additionally, ourmethod
significantly outperforms the baseline [21] by applying spatial-
level transformations when tackling the real-world challenging
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Figure 1: An overview of AdVNP by injecting relighting perturbations to invalidate the watermark verification. In watermark embedding, the watermarks are
embedded via a data poisoning attack by activating some sensitive neurons colored in red for verifying watermarks. The watermarked DNN model is robust against
the common image transformations (e.g., resizing, blur) and gives correct prediction on both the benign samples and verification samples after applying the image
transformations. The benign sample indicates the input without any adding visible/ invisible triggers, while the verification sample represents the inputs by adding
trigger for the further watermark verification purpose. However, the watermarked model is vulnerable to AdvNP and failed in verifying watermarks, but the utility
in predicting benign samples has been well preserved.

dataset, like ImageNet, in both attack success rate and functionality-
preserving.

Our main contributions are summarized as follows:

• We explore the vulnerability of existing DNN watermarking
techniques and introduce a novel watermark removal attack
that disrupts the embedded watermarks via injecting relighting
perturbations in a total preprocessing manner which satisfies the
three basic requirements.

• We evaluate the effectiveness and robustness of AdvNP on two
challenging datasets (e.g. ImageNet, CelebA), for the first time,
against all the existing four DNN watermarking schemes. Exper-
imental results demonstrated the effectiveness and robustness
of AdvNP and shown that AdvNP outperforms the baseline in
terms of both attack success rate and functionality-preserving.

• Our research findings hint a new research direction towards
studying the vulnerabilities and robustness of DNN watermark-
ing techniques by preprocessing the inputs in a natural way, as
opposed to model transformation such as fine-tuning or pruning.
More importantly, our work call for effective countermeasures
to defend against such stealthy and powerful attack.

2 RELATEDWORK
2.1 DNN Model Watermarking
As mentioned in the above section, the trigger-based watermarking
is more practical to be deployed in the real scenario. Here, wemainly
introduce the four existing trigger-based watermarking schemes.

Pattern-based watermarking is the most widely studied wa-
termarking scheme, which blends the same pattern into a set of
images as watermarks via backdoor attack [2]. A line of works
have tried to use text, icons as patterns. Zhang et al.[46] proposed a
crafted watermark generation method by taking a subset of training

images and adding meaningful content like a special string “TEST”
onto them. Gu et al.[20] injected backdoor to US street sign classi-
fier by adding a special sticker to the stop sign, which could lead to
a drop of 25% in accuracy when the backdoor trigger presented.

Adversarial perturbation-based watermarking leverages
the adversarial examples as watermarks, which can be used as the
unique witness for verification. The adversarial perturbation in the
adversarial examples can be computed with common adversarial
techniques like the fast gradient sign method (FGSM) [19], C&W
[9], etc.. Merrer et al. [24] explored the model’s decision frontier to
implement a zero-bit watermarking approach.

OOD-based watermarking utilizes the data from other data
sources which have a different distribution from the original dataset
as watermarks. The model is trained to recognize unrelated data
and classify them to a predefined label, meanwhile, the original
functionality is well preserved. Zhang et al.[46] used handwritten
image “1” as the watermark in CIFAR10 dataset and assigned it a
“airplane” label. For ownership verification, if the protected model
recognizes the handwritten image “1” as “airplane”, the owner can
claim possession of this model.

Semantic-based watermarking is the most stealthy water-
marking scheme. Most of the watermarking methods assume that
watermarks are independent of the original data samples. However,
in semantic-based watermarking, a semantic part of the benign
images can serve as watermarks. The model owners do not need to
modify the images in order to embed the watermarks into the model.
Bagdasaryan et al.[6] demonstrated that assigning an attacker-
chosen label to all images with certain features (e.g., green cars or
cars with racing stripes) for training can create a semantic hidden
backdoor in infected DNNs. This is the most promising watermark-
ing technique as they are stealthy and undetectable [5, 41]. In this
paper, we are the first work to illustrate that the semantic-based
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watermarking technique is not robust and vulnerable to watermark
removal attacks via input preprocessing.

2.2 Vulnerability of DNNWatermarking
In recent years, researchers explore the vulnerability of DNN wa-
termarking techniques and challenge the robustness of embedded
watermarks [28]. The attacks could be classified into the following
three categories.

Detection attack. DNN watermarking with backdoors or ad-
versarial perturbations can be detected using the existing backdoor
or adversarial example detection method. Chen et al.[10] proposed
the Activation Clustering (AC) method for detecting poisonous
training samples by analyzing the neural network activations of
the training data to determine whether it has been poisoned. Gao et
al.[18] revealed that the input-agnostic characteristic of the trigger
is indeed an exploitable weakness of trojan attacks and proposed
STRong Intentional Perturbation (STRIP), to detect trojaned inputs.
However, this attack is not general and requires the knowledge of
watermarking techniques.

Removal attack. A number of studies revealed that the water-
marking techniques are not robust against model transformation,
like model fine-tuning, pruning, etc.. Liu et al.[25] shown that fine-
pruning, a combination of pruning and fine-tuning, can effectively
weaken or even disable the watermarks. Yang et al.[44] demon-
strated that watermarks generated by all the existing methods
can be successfully removed by distillation attacks. Chen et al.[12]
proposed a unified watermark removal framework called REFIT
based on fine-tuning, which is also effective against a wide range
of watermarking schemes. Guo et al.[21] proposed an input prepro-
cessing technique by employing image transformation and model
fine-tuning to improve the capability of functionality preservation.
Our AdvNP is also a kind of watermark removal attack, however,
AdvNP does not rely on the training dataset and involves any model
fine-tuning.

Ambiguity attack. Ambiguity attack is a recently investigated
attack to forge the watermarks by adding additional watermarks
with an inverted process. Attackers can forge counterfeit water-
marks so that the protected model can also detect the forged water-
marks. Fan et al. [16] suggested that ambiguity attacks against DNN
watermarking methods are effective with minor computational and
without the need for original training data. However, it requires
that watermarking schemes are invertible. Unfortunately, the exist-
ing studies in removing watermarks are all failed in satisfying the
three basic requirements which are not practical to be deployed in
the real world.

3 PROBLEM STATEMENT
3.1 System Model
We consider a real-world watermarking system where the owner
O trains a model M for a specific task T , the adversary S illegally
obtains the model for unauthorized use. In DNN model watermark-
ing, the owner O embeds watermarks into the modelM by crafting
a set of verification samples K = {(𝑥𝑛, 𝑦𝑛)}𝑁

𝑛=1 from a dataset to
enforce the model M output correct label 𝑦 for input 𝑥 .

In ownership verification, the owner sends verification samples
to verify the ownership of a suspicious model M𝑠 . The adversary

S transforms the verification samples by pre-processing 𝑃 (K) to
return unexpected output label 𝑦′ ≠ 𝑦 to further mislead the owner.
In this work, to disclose the existence and effectiveness of AdvNP,
the target model M is a DNN model for image classification, while
the verification samples are a set of images F with watermarks.

Generally, a valid DNN watermarking should satisfy the follow-
ing properties, ❶ the functionality-preserving property which does
not introduce performance degradation on benign samples, ❷ the
verifiability property which is agnostic to specific model via ver-
ification samples, and ❸ the robustness property which tolerates
slight model transformation such as fine-tuning, pruning.

3.2 Threat Model
In this work, we assume the following threat model for the adver-
sary who aims at invalidating watermarks.

No knowledge of the watermarking schemes. Some prior
studies like detection attack need to obtain the knowledge of the
watermarking scheme, like pattern-based. In contrast, our AdvNP
is generic to various watermarking schemes.

No knowledge of the original training data. A number of
previous studies exploring removal attacks require a part of original
data to remove the watermarks and preserve the functionalities.
Our AdvNP does not rely on any original training data.

Without introducing any model transformation. Model
transformation (e.g., fine-tuning, pruning) is widely applied for
removing watermarks by leveraging a full training dataset or partial
dataset, however, it will sacrifice the model’s functionality in benign
sample prediction. Our AdvNP is free fine-tuning and preserves
the functionality well.

To study the vulnerability of DNN watermarking, in this paper,
we perform a comprehensive study of the real-world scenario where
the adversary can not obtain any knowledge of the watermarking
schemes, training data, and involving any model modification. In
this case, our threat model completely satisfies the three basic
requirements in invalidating watermarks in a real-world scenario.

4 METHODOLOGY
4.1 Insight
The existing DNN watermarking schemes are a data-poisoning
embedding manner by introducing verification sample-label pairs
during the embedding stage. The verification samples are created by
adding a visible/ invisible trigger into the benign samples where the
trigger could be drawn from a disparate distribution (e.g., pattern-
based, adversarial perturbation-based, and OOD-based watermark-
ing scheme) or a part of benign samples (e.g., semantic-based wa-
termarking scheme) which follows the same distribution. Our basic
insight lies in that the enforced memory to learn sample-label pairs
with such triggers is not robust and could be easily misled by injecting
natural-aware perturbations.

Inspired by the widely studied adversarial examples with imper-
ceptible or physical noises which are widely applied for fooling
classification models [9], the decision boundary could be easily
explored even the samples are well trained with correct labels. In
this work, we conjecture that the trigger is not robust as its desired
label is intentionally learned via a poisoning attack. Intuitively, the
memory of intentionally learned sample-label pairs K is fragile

1811



Rethinking the Vulnerability of DNN Watermarking: Are
Watermarks Robust against Naturalness-aware Perturbations? MM ’22, October 10–14, 2022, Lisboa, Portugal.

Figure 2: An example of our AdvNP relights images from ImageNet andCelebA,
including target lighting estimation and lighting rendering. The images with
a green rectangle are benign examples while the verification samples for
verifying watermarks are colored in a red rectangle. The verification samples
after relighting are predicted incorrectly and failed in verifying the ownership.

and could be easily erased. Thus, we explore the naturalness-aware
perturbations which are stealthy and commonly appeared in the
real-world scenarios to disturb the verification of watermarks.

4.2 Overview of AdvNP
In this paper, we propose a novel approach by injecting naturalness-
aware perturbations to invalidate watermarks. Specifically, we dis-
close the existence of such naturalness-aware perturbations by
relighting which shows the potential of removing watermarks in
an efficient and robust manner. Our method AdvNP via injecting
relighting perturbations includes two crucial stages as presented in
Figure 2. First, given a target model, we need to estimate the target
lighting which could corrupt the visible/ invisible trigger as much
as possible and preserves the utility of predicting benign samples
well, thus a balance should be achieved in this stage. Then, the
lighting rendering with shadows is performed based on the afore-
mentioned target lighting by giving an input. Next, we introduce
how to estimate the target lighting of a target model and conduct
lighting rendering with an input.

4.3 Estimating Target Lighting
To relight an image, we need to know the intensity of lighting and
the position by adding lighting perturbations. The desired lighting
perturbation should corrupt the trigger for watermark verification
in high confidence without sacrificing the capabilities of predicting
benign samples.

Intuitively, high intensity of perturbations will mislead the pre-
diction of the classification model more easily which is illustrated
in the research field of adversarial examples [8, 29]. However, the
adversarial relighting perturbations could be leveraged for fooling
DNN models of benign samples prediction [17]. Thus, the intensity
of injected perturbation 𝜖 should be well investigated.

Moreover, to conduct an effective trigger corruption via relight-
ing perturbation, we hope that the lighting perturbations are applied
in the region of trigger appeared. Unfortunately, the knowledge
of the adopted watermarking technique is unknown to us since
a practical watermark removal attack should work in a black-box
setting as illustrated in Section 3.2. Accordingly, we also explore
where to inject lighting perturbation. Next, we present the facial
image as an example to illustrate our method.

Given a face image I, it can be represented as follows by employ-
ing the Lambertian model, a popular face rendering model.

I = R ⊙ 𝑓 (N, L) (1)
where R, N, and L represents the reflectance, normal, and lighting,
respectively, 𝑓 (·) is the Lambertian shading function, the light L is a
nine dimensional vector w.r.t. nine spherical harmonics coefficients.
We expect to generate a new Ĩ by updating the lighting L to mislead
the watermark verification. To this end, we need to estimate the
reflectance R and the normal N in Equation (1). Unfortunately, the
calculation of reflectance map is still an open problem. We adopt
an alternative strategy by employing albedo-quotient image [38]
to obtain the reflectance-free method for relighting. The Ĩ with
perturbations could be represented as Ĩ = R ⊙ 𝑓 (N, L̃), thus the Ĩ
could be calculated as follows.

Ĩ = R ⊙ 𝑓 (N, L̃) = 𝑓 (N, L̃)
𝑓 (N, L) I (2)

In Equation (2), the relighting of I could be calculated by the
normal N, the original light L, and the target light L̃. Specifically,
such estimation of relighting should be guided by the task of face
recognition by preserving its functionality of benign sample pre-
diction and watermark verification. Here, we define the objective
function for lighting estimation to destroy the image as much as pos-
sible while preserving the utility of benign sample prediction. More
specifically, the objective function can be formulated as follows by
maximizing the distortion between Ĩ and I.

L̃ = max
L′

D(𝜑 ( 𝑓 (N, L
′)

𝑓 (N, L) I), 𝜑 (I)), subject to ∥L̃ − L∥∞ ≤ 𝜖 (3)

where D(·) is a distance function for measuring the similarity
between I and Ĩ, 𝜑 (·) is a function for face embedding, 𝜖 is used for
controlling the magnitude of lighting. Intuitively, we maximize the
similarity by exploring the boundary of 𝜖 .

4.4 Enhancement via Trigger Localization
The existing watermarking techniques could be classified into
pattern-based, OOD-based, adversarial perturbation-based, and
semantic-based, where the pattern-based is the most effective and
robust watermarking technique and involves patching visible trig-
gers into the inputs for watermark verification purposes. The other
three watermarking techniques are more stealthy where the invisi-
ble trigger is distributed in the whole input (e.g., OOD-based and
adversarial perturbation-based) or drawn from the same distribu-
tion as semantic-based watermarking.

To better fool the pattern-based watermarking technique, a
straightforward idea could be localizing the visible trigger and
relighting the region of the trigger to adjust the 𝜖 adaptively. In
this paper, we employ a pre-trained convolutional neural network
(CNN) for trigger embedding by exploiting the correlations between
different semantics levels of CNN to localize the visible trigger as
presented in a prior study [14]. Figure 4 presents the trigger local-
ization with the adopted method. For more details of localizing the
trigger refer to the original publication [14].

4.5 Lighting Rendering with Shadows
To render the lighting, we adopt a relighting method by modeling
shadows which shows potential to be applied in a wide range of
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Figure 3: Visualization of the enhanced relighting via localizing the visible
trigger. The left image is the verification sample with visible trigger by blend-
ing a text, actually applying the pattern-based watermarking method, the
middle image is the highlighted trigger via our employed patch localization
method, the right image is the relighted image via our AdvNP enhanced by
the trigger localization.

image relighting. Specifically, we follow the same setting in a prior
study to train our image relighting model for the lighting rendering
[23]. The image relighting is formulated as a ratio (quotient) image
estimation problem [38] which has been mentioned in Section 4.3
by using an hourglass network [47]. In the model training, shadow
masks are leveraged to handle shadows through weighted ratio
image estimation losses which are applied for ratio image learning.
Next, we introduce the design of training losses and the employed
shadow mask for its practical usage in the real-world settings.

Training losses. In the model training, we need to estimate the
ratio image to preserve high frequency details and capture the sig-
nificant changes around shadow borders. Specifically, six different
losses are designed, namely estimation loss for supervising the ra-
tio image learning, the shadow border ratio image loss for placing
higher emphasis near the shadow border, the source lighting loss
for measuring the similarity between the predicted and ground
truth source lighting, gradient consistency loss for enforcing the
similarity of image gradients, image feature consistency loss for
image feature preserving, and image loss for preserving the local
details of subject. Here, we present the definition of the crucial ratio
image estimation loss as follows.

Lratio =
1
𝑁
∥𝑙𝑜𝑔10 (R𝑝 ) − 𝑙𝑜𝑔10 (R𝑡 )∥1 (4)

where the R𝑝 and R𝑡 are the predicted and ground truth ratio
images, respectively, 𝑁 is the number of pixels in the image.

Shadow masks. We use shadow masks created by using the light-
ing direction to estimate the magnitude of lighting in each image.
The adopted shadow masks allow the model to accommodate the
real-world environment which is vastly different from the con-
trolled settings. The shadow can be classified into cast shadow and
self shadow according to whether the light hits the surface or hits
from the back of the surface [23]. In the shadow mask, the pixel
is assigned to 0 for the cast and self shadow, while the others are
illuminated with 1.

5 EXPERIMENTAL SETTING
5.1 Datasets and DNN Models
In our experiments, we aim to demonstrate the effectiveness of
our method in tackling the real-world challenging tasks, in-
stead of tasks on simple datasets evaluated in prior studies [21],
such as CIFAR10, CIFAR100. Specifically, our experiments are con-
ducted on two real-world challenging datasets, ImageNet for image
classification and CelebA [27], a large scale face dataset including
more than 200K celebrity images, for face recognition. Thus, to

perform a comprehensive evaluation, we adopt four popular DNN
models to evaluate the effectiveness against four existing water-
marking techniques. For the face recognition, we study two popular
face recognition systems, including VGGFace [1] with VGG16 and
ResNet50 as their backbone.

5.2 Watermarking Techniques
In experiments, we implement four popular watermarking tech-
niques for evaluation, including the rarely evaluated semantic-based
watermarking technique. In order to maintain the efficiency of the
watermarking, we keep the configuration setup the same as those
proposed in the original papers. ❶ Pattern-based watermarking.
We adopt the text pattern for implementation demonstrated in [46].
❷ OOD-based watermarking. We follow the same setting in the
prior study [2]. ❸ Adversarial perturbation-based watermark-
ing. We use the adversarial frontier stitching algorithm proposed
by Merrer et al. [24] and the open-source code they released on
GitHub1. ❹ Semantic-based watermarking. We leverage a phys-
ical backdoor attack technique proposed in a recent study [41]
to implement our semantic-based watermarking. Specifically, the
implementation adopts the source code released in a GitHub reposi-
tory2 as suggested by the author [41]. To the best of our knowledge,
this is the only available implementation of the semantic-based
watermarking technique.

5.3 Baseline
We adopt a watermark removal attack via input preprocessing in a
recent study as our baseline which combines imperceptible pattern
embedding and spatial-level transformations [21]. In our experi-
ment, we reproduce the baseline and ensure the implementation
details are correct by checking with the authors. The details of the
baseline are elaborated in Section 6.1.

5.4 Evaluation Metrics
For a comprehensive evaluation of our proposed method, we adopt
two different metrics, attack success rate (ASR) for measuring the
effectiveness of our proposed method in invalidating the water-
marks and functionality preserving prediction rate (FPPR) indicating
whether the method compromises the functionality of target model.

Specifically, the ASR is the ratio of verification samples after
injecting proposed relighting perturbations failed in verifying wa-
termarks, while the FPPR is calculated as the prediction accuracy
on the testing dataset for both benign samples and verification
samples. We employ these two metrics to evaluate the performance
of our AdvNP. Actually, the higher ASR and FPPR indicate the more
effective of our method in invalidating watermarks and preserving
the functionality of target model.

6 EXPERIMENTAL RESULTS
6.1 Effectiveness Evaluation
In our experiments, we evaluate the effectiveness of AdvNP against
all the existing watermarking techniques on two real tasks (e.g.,
image classification on ImageNet and face recognition on CelebA).

1https://github.com/dunky11/adversarial-frontier-stitching
2https://github.com/emilywenger/real_backdoor
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More specifically, we explore to answer the following three ques-
tions, ❶ the first question is whether our AdvNP shows potential
in invalidating the embedded watermarks and defending all the
existing four watermarking techniques, ❷ the second question is
whether our AdvNP has significantly compromised the utility in
predicting benign samples, ❸ the last question is whether our Ad-
vNP outperforms the baseline in terms of invalidating watermarks
and functionality preserving.

Effectiveness evaluation on CelebA against watermarking
techniques. Table 2 presents the experimental results in CelebA
with two different mixture ratios (e.g., 64:1 and 128:1) of benign
samples and verification samples in watermark embedding. The
adopted two mixture ratios are widely adopted in watermarking
embedding and are expected to improve the performance of wa-
termark verification. In predicting the benign samples on VGG16,
the decline rate of AdvNP is a mere 17.6% compared with the base-
line 44.7%. The FPPR of baseline in predicting benign samples has
decreased to less than 50% in the two models. In predicting the veri-
fication sample, the decline rate is more than 60.6% compared with
the baseline 36.2%. The average ASR is 65.3% for the three different
watermarking techniques on two DNN models and the best ASR is
89% against the OOD-based watermarking technique. Experimental
results show that AdvNP preserves the utility well and invalidates
the watermarks effectively in comparison with the baseline. We can
find that the larger ratio of verification samples in watermarking
embedding for improving the performance of watermarking has
no contribution to the performance of our method.

Effectiveness evaluation on ImageNet against watermark-
ing techniques. We follow the same experiment setting in Ima-
geNet with a two mixture ratio as well. Here, the evaluation on
ImageNet is conducted on four popular DNNmodels. Experimental
results in Table 3 show that our AdvNP could invalidate the water-
marks in high confidence and outperforms the baseline in all the
four DNN models against three popular watermarking techniques.
For example, the decline rate for our AdvNP in benign sample pre-
diction with DeseNet121 is 17.5% compared with the baseline 65.1%.
In invalidating the verification samples, the average ASR is 56.5%
on the four watermarking techniques and the best ASR is 97%. For
the adversarial perturbation-based watermarking technique, the
baseline outperforms our AdvNP in invalidating watermarks. The
main reason is that the size of the images collected from ImageNet
is not unified, however, the baseline involves the image scaling
to disrupt the embedded watermarks. We can incorporate the im-
age scaling to improve the effectiveness of our AdvNP against the
adversarial perturbation-based watermarking technique.

Effectiveness evaluation against the semantic-based wa-
termarking technique. For the semantic-based watermarking
techniques, for the first time, we implement it by employing a re-
cently proposed physical backdoor attack by adopting the emoji
sticker as the semantic trigger. The evaluation of the semantic-based
watermarking technique is conducted on a customized dataset pro-
vided by the prior study [41]. Experimental results in Table 3 in
the row of Semantic-based show that the semantic watermarking
technique is robust against our AdvNP and the baseline, where
our AdvNP could preserve the utility in predicting benign samples
but failed in removing watermarks, the baseline could invalidate
watermarks but the functionality of benign sample prediction has

Table 2: Effectiveness evaluation on CelebA with two DNN models against
three different watermarking techniques. The column ratio means the ratio
of benign samples and crafted sample-labels pairs for watermark embedding.
Column B.S and Ben. Samples represent the benign samples for verifying
the functionality has been compromised, while the column Ver. Samples and
V.S. represent the verification sample for evaluating whether our method has
removed the embedded watermarks successfully. The column A.N. indicates
our proposed method and B.L. indicates the baseline for comparison. The Adv.
Per is short for the adversarial perturbation-based watermarking technique.
The Pat.(+) indicates the trigger in the pattern-based watermarking technique
has been localized first and further employs an enhanced target lighting
estimation (see Section 4.4). The symbol ⇑ and ↑ denote the larger value the
better, while the symbol ⇓ indicates the smaller value the better.

Ratio Type
VGG16 ResNet50

Ben. Samples ⇑ Ver. Samples ⇓ Ben. Samples ⇑ Ver. Samples ⇓
B.S. A.N. B.L. V.S. A.N. ASR↑ B.L. B.S. A.N. B.L. V.S. A.N. ASR↑ B.L.

64:1

Pat. 0.85 0.72 0.40 0.93 0.50 0.52 0.77 0.83 0.69 0.45 0.92 0.51 0.44 0.80
Pat. (+) 0.85 0.62 0.40 0.94 0.33 0.64 0.77 0.83 0.61 0.42 0.92 0.31 0.66 0.82
OOD 0.84 0.75 0.41 0.95 0.10 0.89 0.10 0.85 0.71 0.50 0.92 0.09 0.83 0.15

Adv. Per. 0.86 0.73 0.74 0.92 0.60 0.34 0.77 0.90 0.55 0.65 0.94 0.33 0.64 0.90

Average result 0.85 0.71 0.49 0.94 0.38 0.60 0.60 0.85 0.64 0.51 0.93 0.31 0.64 0.67

128:1

Pat. 0.85 0.72 0.42 0.93 0.41 0.56 0.76 0.86 0.73 0.50 0.92 0.45 0.56 0.75
Pat. (+) 0.84 0.64 0.40 0.93 0.35 0.62 0.74 0.86 0.64 0.40 0.94 0.34 0.64 0.78
OOD 0.84 0.75 0.40 0.93 0.10 0.89 0.15 0.84 0.71 0.40 0.95 0.12 0.87 0.10

Adv. Per. 0.85 0.74 0.73 0.91 0.30 0.67 0.85 0.88 0.60 0.65 0.95 0.35 0.63 0.85

Average result 0.85 0.71 0.49 0.93 0.29 0.69 0.63 0.86 0.67 0.49 0.94 0.32 0.68 0.62

been disrupted. Thus, we come up with an idea by incorporating the
image scaling adopted in the baseline to enhance our AdvNP. The
results in the last row in Table 3 show that our enhanced AdvNP
could invalidate the watermarks effectively and the functionality of
benign sample prediction is disrupted partly. However, the disrup-
tion of benign sample prediction could be addressed by employing
model fine-tuning with a subset of limited data as demonstrated in
a recent study [21].

Effectiveness of trigger localization. For the enhancement of
trigger localization, we employ the trigger localization technique to
achieve targeted relighting. In Table 2, our AdvNP gives accuracy
less than 33% after applying trigger localization technique com-
pared with 50% without conducting target lighting in watermark
verification on VGG16 with an ASR improvement more than 12%.
Experimental results show that the trigger localization could effec-
tively improve our attack success rate in invalidating watermarks.

Comparison with the baseline. Experimental results in Table
2 and Table 3 show that our AdvNP outperforms the baseline in
all the settings except the adversarial perturbation watermarking
techniques conducted on ImageNet. We investigate the differences
between images in ImageNet and CelebA and find that the image
size in ImageNet is not unified. Thus, the trigger could be easily
corrupted by employing image scaling adopted in the baseline. In
comparison with the baseline, our AdvNP is pure input preprocess-
ing which is vastly different from the baseline involving fine-tuning
to preserve the model’s fidelity in predicting benign samples.

In summary, our AdvNP shows competitive results in invali-
dating watermarks against all the existing watermarking schemes
across diverse DNN models on challenging real-world datasets.
Experimental results show that our AdvNP also significantly out-
performs the baseline.

6.2 Robustness Evaluation
In a more real-world scenario, we consider a strict assumption that
the owner knows the adversary may inject perturbations into the
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Table 3: Effectiveness evaluation on challenging dataset ImageNet with four different DNN models against three watermarking techniques. The last row Semantic-
based indicates the evaluation against semantic-based watermarking technique on a customized dataset from a recent study [41], rather than the ImageNet dataset.
The row semantic-based (+) indicates the watermark enhanced our AdvNP is enhanced by incorporating image scaling. The other symbol definition is the same as
the definition in Table 2.

Ratio Type
VGG16 ResNet50 MobileNet DenseNet121

Ben. Samples ⇑ Ver. Samples ⇓ Ben. Samples ⇑ Ver. Samples ⇓ Ben. Samples ⇑ Ver. Samples ↓ Ben. Samples ⇑ Ver. Samples ⇓
B.S. A.N. B.L. V.S. A.N. ASR ↑ B.L. B.S. A.N. B.L. V.S. A.N. ASR ↑ B.L. B.S. A.N. B.L. V.S. A.N. ASR ↑ B.L. B.S. A.N. B.L. V.S. A.N. ASR ↑ B.L.

64:1

Pattern 0.64 0.55 0.14 0.92 0.68 0.26 0.44 0.69 0.50 0.17 0.91 0.60 0.34 0.52 0.65 0.57 0.24 0.93 0.61 0.31 0.57 0.68 0.59 0.24 0.91 0.62 0.34 0.58
Pat.(+) 0.64 0.45 0.14 0.92 0.60 0.35 0.4 0.69 0.42 0.17 0.91 0.55 0.39 0.52 0.65 0.52 0.24 0.93 0.53 0.43 0.57 0.65 0.52 0.24 0.91 0.56 0.38 0.58
OOD 0.60 0.50 0.15 0.94 0.05 0.95 0.01 0.65 0.53 0.24 0.94 0.07 0.92 0.04 0.66 0.53 0.19 0.93 0.10 0.89 0.07 0.67 0.58 0.28 0.94 0.08 0.91 0.02

Adv. Per. 0.62 0.50 0.35 0.94 0.60 0.36 0.72 0.67 0.57 0.25 0.95 0.64 0.33 0.30 0.62 0.50 0.17 0.90 0.71 0.21 0.45 0.50 0.40 0.13 0.90 0.60 0.33 0.45

Average result 0.63 0.50 0.20 0.93 0.48 0.48 0.4 0.68 0.51 0.21 0.93 0.47 0.50 0.35 0.65 0.53 0.21 0.92 0.49 0.46 0.42 0.63 0.52 0.22 0.92 0.47 0.49 0.41

128:1

Pattern 0.64 0.53 0.13 0.91 0.67 0.26 0.34 0.67 0.56 0.23 0.91 0.60 0.34 0.67 0.65 0.57 0.24 0.93 0.61 0.34 0.57 0.67 0.58 0.24 0.92 0.55 0.40 0.58
Pat.(+) 0.64 0.47 0.13 0.91 0.62 0.31 0.34 0.67 0.49 0.23 0.91 0.47 0.48 0.52 0.64 0.50 0.23 0.93 0.55 0.41 0.57 0.68 0.53 0.24 0.92 0.50 0.46 0.57
OOD 0.64 0.52 0.15 0.90 0.06 0.93 0.02 0.65 0.55 0.27 0.93 0.10 0.89 0.05 0.67 0.57 0.16 0.94 0.07 0.93 0.03 0.67 0.57 0.24 0.93 0.03 0.97 0.04

Adv. Per. 0.62 0.50 0.35 0.92 0.64 0.30 0.72 0.67 0.57 0.24 0.92 0.65 0.29 0.35 0.62 0.50 0.17 0.90 0.70 0.22 0.44 0.49 0.35 0.13 0.90 0.67 0.26 0.44

Average result 0.64 0.51 0.19 0.91 0.50 0.45 0.36 0.67 0.54 0.24 0.92 0.46 0.50 0.40 0.65 0.54 0.20 0.93 0.48 0.48 0.40 0.63 0.51 0.21 0.92 0.44 0.52 0.41

Semantic-based [41] 0.90 0.85 0.60 0.92 0.87 0.05 0.55 0.90 0.85 0.50 0.94 0.90 0.04 0.67 0.90 0.87 0.60 0.92 0.88 0.04 0.60 0.90 0.85 0.52 0.95 0.89 0.06 0.60
Semantic-based (+) [41] 0.90 0.50 0.60 0.92 0.26 0.72 0.55 0.90 0.45 0.50 0.94 0.35 0.63 0.67 0.90 0.50 0.60 0.92 0.30 0.67 0.60 0.90 0.49 0.52 0.95 0.25 0.74 0.60

Table 4: Robustness evaluation on the image denoising method, KPN. The
columnA.N+KPN indicated the images preprocessed by ourAdvNP and further
employing the denoising method KPN. The adopted watermarking technique
is pattern-based.

Benign Samples ⇑ Verification Samples ⇓
Type B.S. A.N. B.L. A.N+KPN B.L.+KPN B.S. A.N. B.L. A.N+KPN B.L.+KPN

VGG16
( 64 : 1 ) 0.83 0.68 0.46 0.08 0.07 0.93 0.50 0.63 0.13 0.62

VGG16
( 128 : 1 ) 0.81 0.72 0.50 0.07 0.10 0.92 0.53 0.65 0.23 0.43

ResNet50
( 64 : 1 ) 0.81 0.65 0.41 0.07 0.08 0.96 0.62 0.84 0.21 0.58

ResNet50
( 128 : 1 ) 0.82 0.58 0.41 0.04 0.02 0.91 0.57 0.78 0.31 0.54

inputs to mislead the verification. In such circumstances, the owner
will incorporate the image denoising methods into the DNN model
in advance to defend against such input preprocessing threats. Thus,
in our experiments, we also investigate the robustness evaluation
when the injected perturbations are corrupted or denoised mali-
ciously. Specifically, we mainly explore whether our method could
well survive the denoising method.

Specifically, the employed perturbation is unknown to the owner,
thus the denoising method should work in a black-box setting. In
this paper, we adopt a general denoising method based on kernel
prediction networks (KPN) [30] to evaluate the robustness of our
method. Experimental results claimed that the KPN-based denoising
method shows competitive performance in tackling a wide range
of noises on both real and synthetic data. It will be more interesting
to explore other denoising methods for evaluation which could be
our future work.

Table 4 presents the result of evaluating the performance against
the denoising method. The experiment is conducted on a popular fa-
cial image dataset, CelebA, against the pattern-based watermarking
technique on both VGG16 and ResNet50. Experiment results show
that our AdvNP could invalidate the watermarks effectively even if
the images are denoised, but it destroys the utility of benign sample
prediction simultaneously. Actually, the added trigger is a kind of
noise that could be removed by the adopted KPN. Additionally, our
AdvNP also outperforms the baseline in invalidating watermarks
when the inputs are denoised.

7 CONCLUSION
In this paper, we investigate and introduce a novel watermark
removal attack, AdvNP, against the existing DNN watermarking
schemes, as opposed to prior watermark removal attacks that re-
quire the original training dataset for model fine-tuning, and detec-
tion attack obtains the knowledge of watermarking schemes such
as backdoor-based or perturbation-based watermarking techniques.
The proposed AdvNP invalidates watermarks via a preprocessing
manner. To disclose the existence and effectiveness of our AdvNP,
we devise a simple yet effective method to invalidate the water-
marks by injecting relighting perturbations into the samples blindly.
Experimental results on two real tasks against four existing water-
marking techniques show that our proposed method invalidates
the watermarks with a high success rate without compromising the
functionality. Our observation raises a real threat to the existing
watermarking schemes, and we hope that our work facilities more
general solutions to robust DNN watermarking techniques towards
addressing this common watermark removal attack.
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Table 5: Effectiveness of applying data augmentation to defend AdvNP. The
column Data augmentation indicates the watermark embedding enhanced
after applying the data augmentation method. The column increase rate repre-
sents the intensity of improvement after applying the enhancement method.

Benign Samples Verification Samples
Type B.S. A.N. V.S. A.N. Data augmentation Increase rate

Pattern-based 0.85 0.72 0.93 0.50 0.55 10%
OOD-based 0.84 0.75 0.95 0.10 0.86 760%

Table 6: Effectiveness of employing multiple triggers to defend AdvNP. The
column Multiple triggers denotes the watermark embedding enhanced by
adopting multiple triggers.

Benign Samples Verification Samples
Ratio B.S. A.N. V.S. A.N. Multiple triggers Increase rate

64:1 0.85 0.72 0.93 0.50 0.62 24.0%
128:1 0.84 0.73 0.93 0.41 0.56 36.6%

Figure 4: Visualization of images by applying AdvNP and baseline. The origi-
nal indicates the images with a pattern-based trigger, the AdvNP represents
the images preprocessed by relighting, and the Baseline denotes the image
preprocessed by adopting a series of image transformations, like scaling.

Figure 5: Visualization of the images preprocessed by our AdvNP and the
baseline with denoising method KPN.

TECHNICAL APPENDIX
A OVERVIEW
In this supplementary material, we present the experimental results
on watermark enhancement for defending our proposed AdvNP,
visualization in comparison with the baseline, discussion, and soci-
etal impact. Specifically, we explore two potential defense methods
by employing perturbation augmentation and leveraging multiple
patches for enhancing our watermarks. Experimental results show
that the two defense methods show the potential to enhance the
watermark against AdvNP.

B EXPERIMENTAL RESULTS
B.1 Watermark Enhancement for Defending

AdvNP
As discussed in the aforementioned sections, our method by em-
ploying the relighting perturbations could remove the embedded
watermarks in an effective and robust manner. In this paper, we
seek potential solutions to defend against such attacks and en-
hance the robustness of watermarking techniques. Inspired by the
data augmentation which is widely applied for enhancing the gen-
eralization capabilities of the DNN model. Here, we propose the
perturbations augmentation to defend the threat. Moreover, for the

pattern-based watermarking which is the most popular and effec-
tive DNN watermarking scheme, a straightforward idea could be to
blend multiple triggers into the sample to resist the corruption via
naturalness-aware perturbations. Thus, we propose the multiple
triggers to defend our proposed AdvNP against the pattern-based
watermarking scheme.

Proposed method via perturbation augmentation and mul-
tiple triggers. For the perturbation augmentation defense, we gen-
erate large numbers of sample-label pairs K by injecting relighting
perturbations with diverse magnitudes in the watermarking em-
bedding stage. For the multiple triggers defense, the samples for
watermark verification are blended with at least two same triggers.
The experiments are conducted on the popular VGG16 with a facial
dataset, CelebA.

Experimental results. Experimental results in Table 5 illustrate
that the perturbation augmentation could enhance the robustness of
the model against AdvNP, especially the OOD-based watermarking
technique with a watermark verification success rate of more than
86% in compared with 10%without enhancement. The increase rates
for the pattern-based and OOD-based are 10% and 760%, respec-
tively. However, this requires the owner knows the type of adopted
naturalness-ware perturbations which is not feasible most of the
time. For the multiple trigger enhancement, we employ two mix-
tures of benign samples and verification samples and experimental
results reveal that it can enhance the model against the AdvNP with
an increase rate of more than 24% and 36.6%, respectively, however,
the performance on predicting verification samples is only 60% and
works for the pattern-based watermarking techniques merely. In
summary, experimental results in Table 5 and Table 6 demonstrated
that these two enhancement methods could improve the robustness
in defending our AdvNP in some particular experimental settings.
However, our proposed AdvNp still poses real threat to the commu-
nity as the two aforementioned defense methods are not ideal due
to its performance and generalized capabilities in tackling unseen
watermarking techniques.

C VISUALIZATION
Figure 4 visualizes the performance by employing our AdvNP and
the baseline on ImageNet and CelebA. We can easily observe that
our AdvNP corrupts the trigger in high intensity compared with the
baseline. Figure 5 visualizes the image by employing the denoising
method KPN.

D DISCUSSION
Our proposed method achieved competitive results in terms of
both attack success rate and functionality-preserving. However,
our method also exhibits some limitations. First, our AdvNP in-
jects adversarial relighting perturbations to corrupt the embedded
triggers. However, the owner could design a specific denoising
method for the lighting noises if the owner knows our adopted re-
lighting perturbations. To address this issue, we can combine other
naturalness-aware perturbations (e.g., flare, exposure) by employ-
ing random selection since deploying a general denoising method
is difficult in the real-world scenario. Our work is the first attempt
the demonstrate the existence of watermark removal attack by em-
ploying relighting perturbations but not limited to this. It might be
interesting to explore more naturalness-aware perturbations which
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could be adopted for disrupting watermarks. Secondly, the semantic
trigger drawn from the same distribution of the benign input could
evade our AdvNP as the utility of benign sample prediction could
be disrupted simultaneously. However, we can apply the object
segmentation techniques to infer the possible semantic trigger to
achieve targeted relighting.

E SOCIETAL IMPACT
In this work, we make an early attempt to investigate the vulnera-
bility of DNN watermarking to sample preprocessing, which is a
common phenomenon in the real-world and pose a real threat to
existing watermarking schemes. We present very first watermark
removal attack via preprocessing samples via injecting relighting
perturbations without obtaining any knowledge of target model,
training datasets, and type of watermarking schemes. Through com-
prehensive experiments, we have demonstrated that very successful
attack can be well disguised in naturalness-aware perturbations,
unveiling the vulnerabilities of existing trigger-based DNN water-
marking techniques in data-poisoning embedding manner.

Considering that powerful DNN models are critical assets that
attracts the illegally copied, distributed, and misused. However,
the verification samples spread in the real-world scenarios where
various degradation will introduce. The samples could be easily
processed in a natural way to conduct a successful attack on DNN
watermarking schemes. This work is the first attempt to identify
and showcase that such an attack based on injecting relighting

perturbations is not only feasible, but also leads to a high attack
success rate without compromising the functionality of benign
sample prediction. In a larger sense, this work can provide new
thinking into how to better design the DNN watermarking pipeline
in order to mitigate potential risk caused by the vulnerabilities
discussed herein, especially for DNN models deployed in safety-
critical applications, such as face recognition, self-driving, etc..

Bad actors can potentially make use of this newly proposed
watermark removal attack mode as a wheel to pose security risks on
existing DNN watermarking schemes that are not yet well prepared
for this new type of attack. We, as researchers, believe that our
proposed watermark removal attack can accelerate the research and
development of more robust DNN watermarking techniques and
effective measures for defending against this real threat. Therefore,
our work can serve as an asset and a stepping stone for the future-
generation trustworthy design of DNN watermarking techniques.

In addition to the social impact discussed above, the proposed
method can also influence various research directions. For example,
our proposed AdvNP:
• hints new adversarial training or data augmentation techniques
for training robust DNN models in protecting its copyright.

• hints developing new watermarking techniques to be resilience
against this novel watermark removal attack.

• hints new directions in exploring the vulnerability of DNN wa-
termarking schemes in suffering other preprocessing methods
on a wide range tasks.
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