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ABSTRACT

Cloud storage services are widely deployed and employed in recent years. A number of data checking techniques have
been proposed for secure cloud storage services. These state-of-the-art schemes only focus on some aspects, such as data
integrity, users’ ownership, and data resiliency, but the overall safety of cloud storage services is not discussed sufficiently.
Considering cloud storage requirements as a whole, in this paper, we propose a model of message-locked proof of own-
ership and retrievability with remote repairing, which provides data confidentiality, secure cross-user deduplication at the
client-side, file retrievability, ownership privacy-preserving, random block accessing, and remote repairing simultaneously.
In addition, we also propose a concrete construction and prove its security in the random oracle model. The experimental
results show that our construction is efficient in practice. Copyright © 2016 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Cloud storage services (e.g., Amazon S3, Google Drive,
and Microsoft Azure) have become one of the most pop-
ular applications in recent years [1–4]. With cloud storage
services, users can escrow their files to the cloud storage
servers and enjoy the on-demand high-quality applica-
tions and services, without the burden of local data storage
and maintenance. Users can access their data anywhere
anytime and even share them with others [5]. Both indi-
viduals and companies can obtain tremendous benefits
from this kind of outsourcing services, such as mitiga-
tion of the responsibility to storage management, flexible
accessibility with location independence, and avoidance of
huge economic costs on hardware, software, and person-
nel maintenances [6]. Although cloud storage technology
brings a number of advantages, it also causes many new
security challenges that can be divided into two categories:
client-side and server-side.

In one side, from the perspective of users, the first
consideration is the authenticity of cloud storage service
provider. Because of the risks of intrusion, failure, and
privacy leakage, a practical cloud storage system should
provide both data confidentiality and integrity for users.

Encryption is supposed to the most common method to
ensure data confidentiality [7]. As a result, in order to
protect data privacy, users prefer encrypting their files
before outsourcing. Message authentication codes and dig-
ital signatures are used to ensure data integrity in many
systems. But these methods require the original files to
accomplish verification, which means that users need to
download the complete files before verifying. Ateniese, et
al. [8] introduced provable data possession (PDP) to ensure
data integrity. Employing a PDP scheme, users can ver-
ify the integrity of remote files without downloading them
from the server. However, PDP only provides a proba-
bilistic guarantee of data integrity. For example, the server
can reverse one bit of each file and pass verification with
overwhelming probability.

The second consideration of users is that a practical
cloud storage system should provide file retrievability
rather than isolated probabilistic guarantee of data
integrity. To achieve file retrievability, Juels and Kaliski
Jr. [9] introduced proof of retrievability (PoR). In a PoR
scheme, users not only can verify the integrity of remote
files but also can retrieve the original files if the verifica-
tion succeeds. However, the repairing cost of error-correct-
ing codes is expensive. Dimakis, et al. [10] proposed
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regenerating code to reduce the repairing cost, but it only
supports file-level accessing rather than random block
accessing. In fact, generally, people only need to modify
parts of the file blocks. Thus, a block-level coding scheme
is a better choice.

In the other side, from the perspective of cloud stor-
age service provider, the efficiency of cloud storage system
is also a key factor to reduce costs and enhance users’
friendliness, under the premise of security. File-level dedu-
plication is an effective technique to reduce data redun-
dancy at the server-side. That means, for a certain file, the
server only maintains a single copy of the file to make effi-
cient use of storage space and communication bandwidth,
regardless of how many users ask to store that file. There-
fore, if the file already exists on the server, users do not
need to upload it again to the server. However, a malicious
user may attempt to access a file of other users by con-
vincing the server that it holds this file. To prevent such
attacks, Halevi, et al. [11] introduced proof of ownership
(POW) to realize secure deduplication at the client-side.
As we mentioned that users prefer encrypting their files
at the client-side, it is challenging to achieve cross-user
deduplication, because identical files may be encrypted
to different ciphertexts. Fortunately, Bellare, et al. [12]
introduced a method called message-locked encryption to
achieve secure deduplication for ciphertexts, which can
offer tag consistency security and meet the strong privacy
notion PRV$-CDA (“cda” stands for “chosen-distribution
attack”) defined in [12].

With aforementioned discussion, one may design the
following system as a practical solution.

Strawman. If a client intends to upload a file, he or
she first encrypts the file by encryption algorithm in [12]
and encodes the encrypted file by error-correcting code
as [9] does. Then he or she computes the hash value of
the encoded file and sends it to the server. If the hash
value matches some file stored on the server, the client and
the server run the challenge–response protocol in [11] to
achieve secure cross-user deduplication at the client-side.
Otherwise, the client employs the publicly-verifiable vari-
ant of tagging algorithm in [8] and uploads the encoded file
along with all tags to the server. Then, anyone who knows
the public key can run the challenge–response protocol in
[8] to verify the integrity.

Unfortunately, there are three major disadvantages in
this strawman solution. The first one is computationally
intensive. Almost all of the publicly-verifiable PDP or PoR
schemes employ public-key cryptography technique, so the
heavy computation is hardly avoided. And it is unneces-
sary to encode the file with error-correcting code if the
client only needs to accomplish deduplication at the client-
side (without uploading it to the server). The second one is
privacy leakage. Because other clients need to use a pub-
lic key to verify integrity, they can conclude the user who
uploaded the file. The last drawback is the expensive cost
for repairing damaged blocks as we mentioned. To repair a
damaged block, a solution-based error-correcting code has
to first retrieve the entire original file as explained in [10].

Given the concerns mentioned previously, we design a
comprehensive model for such cloud storage systems. For
clarity, we summarize the desired requirements here:

� Data confidentiality. The content of users’ files
should not be leaked via a malicious administrator or
a server intruder.

� Secure cross-user deduplication. A user does not
need to upload a file if the server stores the same
one. In addition, a malicious user cannot convince the
server that it holds a certain file just based on some
short information about the file.

� File retrievability. Users can check the integrity of
their files without downloading them, and if the server
passes the verification, they can always recover the
original files.

� Ownership privacy-preserving. No user should be
able to learn the ownership of a file except the server
and the specified users.

� Random block accessing. Users can access random
blocks of a file without downloading or decoding the
entire file.

� Remote repairing. When users discover that some
blocks of a file are damaged, the server can repair
them at the server-side.

Our contributions. The main contributions of our
paper are summarized as follows:

(1) We design the model of message-locked proof of
ownership and retrievability (or message-locked
PoOR for short) and give the formal security defini-
tions.

(2) We propose the first efficient construction of
message-locked PoOR with remote repairing and
prove its security under random oracle model.

(3) We implement our construction and compare it with
other schemes. The experimental results show that
our construction is efficient in practice.

Organization. The rest of this paper is organized as
follows. We briefly discuss the related work in the next
section. Then, we present the system model, threat model,
and design goals in Section 3. In Section 4, we propose the
model of message-locked PoOR, which is followed by a
concrete scheme called (3R-PoOR) in Section 5. The secu-
rity analysis and performance evaluation of our scheme
are presented in Sections 6 and 7, respectively. In the last
section, we conclude this paper.

2. RELATED WORK

Currently, many researchers concern the issue of secure
cloud storage. This section reviews the related works from
three aspects: data integrity, data retrievability, and secure
cross-user deduplication, where the first two aspects are
the secure requirements of users and the last one is the
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requirement of cloud server. Especially, some schemes,
belonging to these three types, also may partially satisfy
some other requirements that we listed in Section 1.

To provide integrity protection for remote data, Ate-
niese, et al. [8] initially constructed PDP. They proposed
two provably secure PDP schemes (S-PDP and E-PDP)
based on homomorphic verifiable tags that support unlim-
ited verification. But their schemes are computationally
intensive. Based on [8], Ateniese, et al. [13] presented
two provably secure PDP schemes that are more efficient
than previous solutions. In follow-up work, improved stud-
ies [14–17] enhanced the capability of PDP from various
aspects. However, a serious problem of PDP is that a cor-
rupted sever, which loses a small portion of users’ files,
may still pass the verification. In that case, users cannot
recover the original files.

On the other hand, to protect the integrity and recover-
ability of data stored on the cloud, Juels and Kaliski [9]
introduced a closely related concept called PoR. In [9],
the authors proposed an efficient sentinel-based scheme
utilizing error-correcting code, but it only supports a lim-
ited number of queries. Several recent studies proposed
some schemes that improve security and efficiency of PoR
[18–21], and some other schemes that enhance the capabil-
ity of PoR [22–24]. All of these researches employed exist-
ing coding algorithms that do not support efficient remote
repairing. Dimakis, et al. [10] found that the repairing
cost of error-correcting code was expensive in distributed
storage systems. Then, they proposed a regenerating code
to reduce the repairing cost. Their scheme does not sup-
port random block accessing, thus can only be used in
read-rarely systems.

Moreover, to satisfy the requirement of secure cross-
user deduplication, Halevi, et al. [11] introduced a solution
called POW. The authors proposed three practical schemes
based on Merkle tree that only a few hash values should
be transmitted when the user convinces the server that it
has a certain file. Pietro, et al. [25] enhanced [11] and
proposed a secure POW scheme that reduces the computa-
tional cost to a constant number of pseudorandom function
operations. Both of their solutions deal with the files in

plaintext, and it is more challenging when the files are
encrypted. Bellare, et al. [12] introduced message-locked
encryption to solve deduplication for ciphertext, which is
a generalization of convergent encryption. Unfortunately,
their research does not support both file retrievability and
ownership privacy-preserving. Zheng and Xu [26] pro-
posed a solution that achieves POW and proof of storage,
but their scheme cannot provide data confidentiality and
ownership privacy-preserving.

Most of existing works just provide a partial solu-
tion of secure cloud storage; thus, a comprehensive solu-
tion, which covers data confidentiality, file retrievability,
secure cross-user deduplication at the client-side, own-
ership privacy-preserving, random block accessing, and
remote repairing simultaneously, becomes significant.

3. PROBLEM STATEMENT

In this section, we describe the system model and threat
model of this paper at first. Then, we illustrate the design
goals of our scheme.

3.1. System model

In this paper, the system model is composed of two
main entities: the cloud server and users (as illustrated in
Figure 1). The cloud server, which has large storage space
and computation resource, offers data storage services to
users. Users can be either individual consumers or organi-
zations. The users upload their data (such as documents,
pictures, and videos) to the cloud server and can access
them anywhere anytime, which relieves the burden of users
in storage and maintenance. However, the storage location
of data and the concrete implementation of cloud storage
services are transparent to users. We assume users’ data are
in form of files that are further divided into a number of
blocks. To protect the integrity of the data, each block is
attached with an authentication tag generated by users.

In the system, when a user U wants to outsource a
file F, the cloud server firstly estimates whether F already

Figure 1. System model.
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exists in cloud. If F has been stored in cloud and U passes
the ownership checking, then U need not upload F and is
marked as a valid owner of F by the cloud server. Other-
wise, if F does not exist in cloud, U has to preprocess F
and upload it. After the procedure of storing, U checks the
integrity of F periodically to assure that F is intact in cloud.

The cloud server attempts to minimize the bandwidth
and to make efficient use of its storage facility by dedupli-
cation at the client-side. As a result, before a user uploads
a file, the cloud server should estimate whether the file has
been uploaded by another user. In detail, at first, the user
sends the hash value of the file to the cloud server, and then
the server checks whether the hash value matches some
existing hash value stored on the cloud. If so, the server
generates a challenge to ask the user for the POW. Upon a
successful challenge, the user need not to upload the file to
the server again and is marked as an owner of the file by
the server at the same time. On the contrary, if the file does
not exist on the cloud, the user must encrypt and encode
all blocks of the file. Additionally, each block has a unique
authentication tag. After that, the user uploads the encoded
file with all tags to the cloud server.

As users no longer possess their data locally, it is of
critical importance for users to ensure that their data are
being successfully stored and maintained. For checking
the integrity of the files, users periodically challenge the
cloud server by a randomly selected set of file blocks. With
the queried blocks and their corresponding tags, the server
generates a proof of data possession and sends it back to
users. Then, users verify the proof by its local metadata.
If the verification succeeds, users can retrieve the origi-
nal files when they download these files. Otherwise, users
can request the cloud server to exactly repair the damaged
blocks if the number of damaged blocks is not greater than
a threshold value.

3.2. Threat model

In our 3R-PoOR scheme, we consider four factors that may
threaten the integrity of users’ data stored on the cloud
server. First, users’ data stored on the cloud may be pol-
luted inadvertently because of hardware/software failures
and operational errors of system administrator. Second, the
cloud service provider may modify and leak users’ data
illegally. Third, attackers may corrupt data on the cloud
and prevent users from using data correctly. Last but not
the least, in order to access a file uploaded by other users, a
malicious user may cheat the server by claiming that it has
this file, while it does not possess the whole file at all.

3.3. Design goals

To correctly and efficiently verify the integrity of users’
data with message-locked POW and remote repairing, our
scheme should achieve the following properties: (i) Cor-
rectness: Users are able to correctly check the integrity of
their data without retrieving the entire data from the cloud.

In particular, if the data are corrupted, the cloud server can-
not forge valid integrity proof information. (ii) Soundness:
Any malicious adversary without the whole file stored on
the cloud cannot pass the ownership checking protocol.
(iii) Efficiency: The cloud server can efficiently repair the
damaged blocks without the help of the users.

4. MESSAGE-LOCKED POOR

In this section, we propose a novel model called message-
locked PoOR and provide the formal security definitions.
This model can protect the comprehensive security of
cloud storage including data confidentiality, secure cross-
user deduplication at the client-side, file retrievability,
and ownership privacy-preserving simultaneously. Ran-
dom block accessing and remote repairing depend on the
underlying coding algorithm, which we discuss in the next
section.

4.1. Syntax and correctness

Definition 1 (Message-locked PoOR). A message-
locked PoOR scheme consists of the following four algo-
rithms and protocols:

� (id, e)  Init(1�, F), this deterministic initialization
algorithm is run by a client, which takes as input the
security parameter � and the original file F, outputs
the public identity id and the secret metadata e.

� (C, T)  Encode(e, F), this encoding algorithm is
run by a client, which takes as input the metadata e
and the original file F, outputs the encoded file C and
the authenticator T.

� 0/1  OCheckhU(e, F),S(C, T)i, this randomized
ownership checking protocol is run by a client U and
a server S interactively. U takes as input the meta-
data e and the original file F, while S takes as input
the encoded file C and the authenticator T. This pro-
tocol outputs 1 if U convinces S that it possesses the
complete file F locally and 0 otherwise.

� 0/1  RCheckhS(C, T),U(e)i, this randomized
retrievability checking protocol is run by a server
S and a client U interactively. S takes as input the
encoded file C and the authenticator T, while U takes
as input the metadata e. This protocol outputs 1 if
S convinces U that it faithfully stores (C, T) and 0
otherwise.

Because the initialization algorithm is deterministic,
two same files always have the same metadata and identity.
The metadata serves as the secret key in a message-locked
PoOR scheme, the size of which is much shorter than the
size of file to avoid trivial constructions. However, unlike
[12], the identity in our model is derived from the original
file rather than the encoded file. It is because the identity
in our model is used to decide whether the deduplica-
tion at the client-side should be conducted and the client
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has not to fully encode the file if the file already exists
on the server. The word “message-locked” means that the
message is locked by itself, which is same as [12]. The
message-locked encryption in our model can also achieve
tag consistency and PRV$-CDA[12]. In other words, an
adversary cannot make a honest client recover a file differ-
ent from the one he or she uploaded, and the encryption
of an unpredictable message is indistinguishable from a
random string of the same length.

The encoding algorithm is the most time-consuming
process in message-locked PoOR. Therefore, it is con-
ducted only when necessary. The encoding algorithm can
be probabilistic or deterministic. The output of this algo-
rithm consists of two parts: the encoded file that is obtained
from an encryption algorithm and a coding algorithm, and
the authenticator that is obtained from a tagging algorithm.

In ownership checking protocol, the client needs to
prove to the server that it possesses the whole original
file locally, and this is why it takes the original file as
input. When this protocol is executed, the client only
needs to encode parts of the file on demand. However, the
server can only take authenticator as input for efficiency
consideration.

In retrievability checking protocol, the client only takes
the metadata as input when it runs this protocol, because it
deleted the file locally after uploading. The server needs to
take the encoded file as input in this protocol; otherwise,
the checking protocol can only verify the possession of the
authenticator.

Definition 2 (Correctness). A message-locked PoOR
scheme is correct if the following conditions hold for any
positive integer �, any file F 2 {0, 1}*, and any metadata
e generated from Init(1�, F):

Pr[OCheckhU(e, F),S(Encode(e, F))i = 1] � 1 – �1(�)

Pr[RCheckhS(Encode(e, F)),U(e)i = 1] � 1 – �2(�)

where �1(�) and �2(�) are two negligible functions.

4.2. Security definition

The security of message-locked PoOR consists of four
parts: indistinguishability, uncheatability, unforgeability,
and nonidentifiability, which correspond to the require-
ments of data confidentiality, secure cross-user deduplica-
tion, file retrievability, and ownership privacy-preserving
in Section 1. Only when message-locked PoOR satis-
fies indistinguishability, uncheatability, unforgeability, and
nonidentifiability can the scheme achieve corresponding
requirements in a secure way. The other two requirements
random block accessing and remote repairing, which are
not included in basic message-locked PoOR model and are
not security requirements, will be discussed in the next
subsection.

First of all, we think about indistinguishability that cap-
tures the requirement of data confidentiality. Our definition

is similar to the privacy definition in [12]. But the adversary
in our model can obtain message-locked authenticator. We
start this definition from the distinguishing game between
a challenger C who serves as the client and an adversary A
who serves as the server:

(1) C chooses a bit ˇ 2 {0, 1} and a file vector F
from the distribution given by A. We require that the
entries in F are pairwise distinct. For j = 1, : : : , |F|,
C runs (id[j], e[j])  Init(1�, F[j]), (C1[j], T[j])  
Encode(e[j], F[j]), C0[j]  {0, 1}|C1[j]| and sends
(id, Cˇ , T) to A.

(2) A outputs ˇ0. A wins if ˇ0 = ˇ.

Definition 3 (Indistinguishability). A message-locked
PoOR scheme is indistinguishable if for any probabilis-
tic polynomial time (PPT) adversary A and unpredictable
source (see [12] for the details of unpredictable), the prob-
ability that A wins the distinguishing game is negligible
greater than 1/2.

Secondly, we consider the definition of uncheatability
that captures the requirement of secure cross-user dedu-
plication at the client-side. Intuitively, the client cannot
cheat the server that it possesses the complete file except
with negligible probability. As in the definition of indis-
tinguishability, we require that the files have high min-
entropy in the definition of uncheatability. We start this
definition from the cheating game between a challenger C
and an adversary A:

(1) C chooses a file F  {0, 1}* from the distribution
given by A, runs (id, e)  Init(1�, F), and sends
(id, e) to A.

(2) A queries the blocks of F for q(�) times, where q(�)
denotes some polynomial.

(3) C and A run the ownership checking protocol. A
wins if the protocol returns 1.

Definition 4 (Uncheatability). A message-locked PoOR
scheme is uncheatable if for any PPT adversary A and
unpredictable source, the probability that A wins the
cheating game is negligible.

Thirdly, unforgeability captures the requirement of file
retrievability. If the server passes the retrievability check-
ing protocol, the client is able to retrieve the complete
original file with overwhelming probability. We start this
definition from the forging game between a challenger C
who serves as the client and an adversary A who serves as
the server:

(1) C chooses a file F  {0, 1}* from the distribution
given by A, runs (id, e)  Init(1�, F), and sends
(id, e) to A.

(2) A that serves as the client and C that serves as the
server run the retrievability checking protocol for
q1(�) times, where q1(�) denotes some polynomial.
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(3) A that serves as the server and C that serves as the
client run the ownership checking protocol for q2(�)
times, where q2(�) denotes some polynomial.

(4) C and A run the retrievability checking protocol
that C serves as the client. A wins if the protocol
returns 1.

Definition 5 (Unforgeability). A message-locked PoOR
scheme is unforgeable if for any PPT adversary A who
wins the forging game, there exists an extractor who can
recover F from A except with negligible probability.

Finally, nonidentifiability captures the requirement of
ownership privacy-preserving. Similarly, we give the defi-
nition by the identifying game between two challengers C0
and C1 who serve as the clients and an adversary A who
serves as the server:

(1) A chooses a file F  {0, 1}* and gives it to C0
and C1. For j = 0, 1, Cj runs (idj, ej)  Init(1�, F),
(Cj, Tj)  Encode(ej, F) and gives (idj, Cj, Tj) to
A. Then A runs OCheckhCj(ej, F),A(Cj, Tj)i and
RCheckhA(Cj, Tj), Cj(ej)i for one time.

(2) The system chooses a bit ˇ 2 {0, 1}.
Cˇ runs (id, e)  Init(1�, F), (C, T)  

Encode(e, F) and gives (id, C, T) to A.
Then A runs OCheckhCˇ (e, F),A(C, T)i and
RCheckhA(C, T), Cˇ (e)i for one time.

(3) A outputs ˇ0. A wins if ˇ0 = ˇ.

Definition 6 (Nonidentifiability). A message-locked
PoOR scheme is perfect unidentifiable if for any PPT
adversary A, the probability that A wins the identifying
game is exactly 1/2.

4.3. Extension

The original message-locked PoOR model does not require
random block accessing and remote repairing, which are
essential requirements in our environment. Therefore, we
add the following two protocols in a message-locked PoOR
scheme to capture these two requirements:

� ?/mi  ReadhU(i),S(C)i, this deterministic access-
ing protocol is run by a client U and a server S. U
takes as input the index i; S takes as input the encoded
file C. This protocol outputs the ith original block mi
if accessing is valid and ? otherwise. The scheme
supports random block access if the block accessing
complexity at the server-side is O(1).

� 0/1  RepairhU(e, i),S(C)i, this deterministic
repairing protocol is run by a client U and a server
S. U takes as input the metadata e and the index i;
S takes as input the encoded file C whose ith block
was damaged. This protocol outputs the 1 if repairing
is successful and 0 otherwise. The scheme supports
remote repairing if the repairing can be performed at
the server-side without the help of clients.

These two extensions are useful for a practical cloud
storage system. The main advantage of random block
accessing is that the clients can access any block with
minimum communication cost and computational cost.
Furthermore, most of the existing solutions [9,27], and [23]
only take the file retrievability into account. In this case,
although the encoded file is damaged and the client does
not find it, the original file can be recovered at the client-
side. But what if the clients find the damage and the dam-
aged blocks can be repaired? Those solutions require the
clients download enough blocks to accomplish repairing,
which can cause huge communication cost and computa-
tional cost at the client-side. However, remote repairing can
reduce the cost of the clients. With remote repairing, the
server can repair the damaged block without the help of
the clients.

5. THE CONSTRUCTION OF
3R-POOR

In this section, we describe a concrete scheme called
3R-PoOR. It consists of six algorithms and protocols as
illustrated in Section 4.

5.1. Building blocks

The main tools employed in our scheme are described next
(we do not emphasize the length of inputs and outputs for
simplicity):

� Collision-resistant hash functions: A hash func-
tion H : {0, 1}* ! {0, 1}* is collision-resistant if
it is impossible to find two different values x and
y that satisfy H(x) = H(y) except with negligible
probability.

� Keyed-hash message authentication codes:
A keyed-hash message authentication code
HMACk(x) : {0, 1}* � {0, 1}* ! {0, 1}* is a deter-
ministic function that takes a key k and an input x
and outputs a value y.

� Pseudorandom functions: A pseudorandom func-
tion fk(x) : {0, 1}* � {0, 1}* ! {0, 1}* is a
deterministic function that takes a key k and an input
x and outputs a value y that is indistinguishable from
a true random function of the same input x.

� Pseudorandom permutations: A pseudorandom
permutation �k(x) : {0, 1}* � [1, l] ! [1, l] is a
deterministic function that takes a key k and an input
x where 1 � x � l and outputs a value y where
1 � y � l that is indistinguishable from a true
random permutation of the same input x.

� Key derivation functions: A key derivation function
KDF : {0, 1}*� {0, 1}* ! {0, 1}* is a deterministic
function that can derive a secret key from some secret
values.

� Deterministic symmetric encryption functions:
A deterministic symmetric encryption function
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Enck(m) : {0, 1}*�{0, 1}* ! {0, 1}* is a determin-
istic function that takes a key k and a plaintext m and
outputs a ciphertext c.

5.2. The coding algorithm

Definition 5 requires that a client should be able to retrieve
the complete original file if the server passes the retriev-
ability checking protocol. But as mentioned in Section 1,
unlike traditional message authentication codes and dig-
ital signatures, the retrievability checking protocol only
provides a probabilistic guarantee of data integrity, for
example, if a file has 10 000 blocks and the server deletes
only one of them. Then, when a client challenges 460
blocks (this number is used in many of PDP and PoR
schemes), the probability that the server can pass the verifi-
cation is greater than 95%. To achieve file retrievability, we
have to employ data redundancy technique [9,23,28,29],
such as error-correcting codes and erasure codes.

Roughly speaking, a (n+� , n, d) erasure code expands n
blocks to n+� blocks and can tolerate at most d–1 damaged
blocks. Combining retrievability checking protocol and
erasure code can achieve the requirement of file retriev-
ability. That is, if the server manipulated more than d – 1
blocks, the client can discover the misbehavior with over-
whelming probability; otherwise, the client can retrieve the
original file with the help of the erasure code. When the
client discovers that some blocks are damaged, it is possi-
ble to repair them if the number of total damaged blocks is
less than d. But it needs to retrieve the complete file before
repairing the damaged blocks, which causes heavy compu-
tational cost and communication cost. If the server knows
the eraser coding algorithm, the repairing work can be per-
formed at the server-side, but the input/output cost and
the communication cost are high in the distributed servers
environment. Regenerating code in [10] can reduce com-
munication cost in repairing and does not need to retrieve
the complete file, but it does not support random block
accessing that is an essential requirement in our model.

Given the aforementioned concerns, we employ a lin-
ear coding algorithm that satisfies our requirements. We
describe the coding algorithm in single server environ-
ment, and the situation of distributed servers environment
is beyond the scope of this paper. To achieve random block
accessing, we have to use a systematic code; therefore,
the output of the coding algorithm contains the input. To
achieve remote repairing, the server needs to know all of
the coefficients and corresponding coded blocks.

Assuming a file F consists of n original blocks, the
server allows the clients to add � coded blocks that satisfies
� < n, and then the expansion factor is (n+� )/n. The clients
prefer that the threshold value is ı. If the server manip-
ulates more than ı blocks, the clients can discover the
misbehavior except with negligible probability; otherwise,
they can retrieve the original file with overwhelming prob-
ability. Because we need to retrieve n original blocks, ı
should not be greater than � . Then we have 0 < ı � � < n.
If ı = � , we call it maximum distance separable code.

Unlike erasure codes that focus on the storage-tolerance
trade-off and regenerating codes that focus on the storage-
bandwidth trade-off, we focus on the storage-computation
trade-off. To capture this trade-off, we introduce a parame-
ter ˇ that denotes the minimum number of original blocks
in a coded block. Because we need to ensure that a mali-
cious server cannot delete all of the blocks that contain a
certain original block without been discovered, each orig-
inal block should be encoded into at least ı coded blocks.
Then, we have ın/� � ˇ � n. If a code is maximum
distance separable, we can obtain ˇ = n, which indi-
cates that the server has to access n blocks to repair one
damaged block. Therefore, we ask for a better repairing
performance. That is, we cannot employ a maximum dis-
tance separable code, and for a fixed ratio ı/(n + � ), we
should balance � and ˇ.

For a given (n, � , ı,ˇ), a coded block is the linear com-
bination of ˇ successive original blocks. We can choose
one seed for each coded block to generate ˇ random coef-
ficients in some finite field. As shown in [30], if the finite
field is sufficiently large, the server can repair the original
blocks with overwhelming probability.

5.3. The initialization algorithm and the
encoding algorithm

Everyone who intends to upload a file should run the
initialization algorithm, but only the client who actually
uploads the file runs the encoding algorithm. The initial-
ization algorithm takes as input the security parameter �
that decides the length of output and the original file F,
computes the metadata e and the identity id as follows:

e = H(F), id = H(e)

The identity id is used to decide whether the deduplica-
tion at the client-side should be conducted as explained in
Section 4.

The encoding algorithm is shown in Figure 2. The key
for encrypting and tagging is randomly chosen from a key

Figure 2. The encoding algorithm.
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space rather than the metadata itself, which makes our
encoding algorithm probabilistic. The encryption method
is similar to counter mode; thus, the client can encrypt parts
of the file on demand. s is used to generate the seed of ran-
dom coefficients as explained in Section 5.2. We employ
homomorphic authenticator as [20] does, but our authenti-
cator is slightly different from theirs. They use a random
secret value to construct the tag, while we use a value that
is interrelated with the file. In this way, each client that pos-
sesses the file can generate the same tag. Notice that, the
tagging algorithm for the encoded blocks is slightly dif-
ferent from the algorithm for the original blocks, which
is because we to bind the seed and the encoded blocks
together.

5.4. The ownership checking protocol

If the client claims it has a certain file that exists on the
server, the server runs the ownership checking protocol to
verify the ownership. The detail of this protocol is shown
in Figure 3. Both the client and the server employ the
pseudorandom permutation to generate a subset of indexes
that indicates b challenged blocks. Notice that the client
only needs to prove that it has the original blocks, there-
fore b challenged blocks are chosen from n original blocks.
Because the coding algorithm in our construction is sys-
tematic code and the encryption mode is similar to counter,
the client only needs to encrypt parts of the file on demand
and does not need to compute any encoded blocks. This
reduces much computational cost in the ownership check-
ing protocol. The server verifies v without the help of
the tags, which means that the tags only serve for the
retrievability checking protocol in our scheme.

5.5. The retrievability checking protocol

At any time, the client who has the ownership of the file
can run the retrievability checking protocol to determine

Figure 3. The ownership checking protocol.

Figure 4. The retrievability checking protocol.

the integrity of the file. The detail of this protocol is shown
in Figure 4. Unlike the ownership checking protocol, client
has to verify all of the blocks stored on the server in the
retrievability checking protocol, including original blocks
and encoded blocks. Therefore b challenged blocks should
be chosen from n + � blocks. We compress the proof by
using homomorphic authenticators as [8] and [20] do. Note
that this protocol only provides a probabilistic guarantee
that the server did not manipulate or delete the blocks. The
security of file retrievability is achieved by combining this
protocol and the underlying coding algorithm.

5.6. The accessing protocol and the
repairing protocol

The accessing protocol is straightforward. When the client
intends to access the ith original block, the server sim-
ply returns (r, ci) to the client if 1 � i � n. The client
obtains mi if ci is successfully decrypted and ? other-
wise. In this way, clients can access any block of original
file with minimum communication cost and computational
cost.

When the retrievability checking protocol fails, the
client runs the repairing protocol to exactly repair the dam-
aged blocks if the number of damaged blocks is not greater
than ı. The detail of this protocol is shown in Figure 5.
Supposing the ith block is identified a faulty block, we
should consider whether its tag is correct. Specially, if the
tag of the faulty block is damaged, the client needs to gen-
erate the tag again after the faulty block is successfully
repaired. As long as all of the materials used in repairing
are valid and correct, the server can repair the damaged
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Figure 5. The repairing protocol.

block successfully without the help of the client, which
can efficiently reduce the repair cost of the clients. For a
well-designed coding algorithm, the indexes i˛1 , : : : , i˛ˇ
and the coefficients a˛1 , : : : , a˛ˇ need not to be sent to
the client; thus, the communication cost can be further
reduced.

6. SECURITY ANALYSIS

6.1. Security proof

In this subsection, we prove the security of 3R-PoOR. All
theorems are proved under the random oracle model. For
each proof, we only give the proof sketch because of the
page limited.

Theorem 1. Let H be a random oracle, 3R-PoOR is
indistinguishable if the deterministic symmetric encryption
is both KR-secure and ROR-secure and the pseudorandom
function is secure.

Proof. (sketch) This proof consists of a series of games.
The first game is exactly the same with the distinguish

game. In the second game, the hash values are chosen from
a uniform distribution, which indicates the hash function
is viewed as the random oracle. Thus, the probability that
the adversary can distinguish the first game and the second
game is negligible. In the third game, the tags are chosen
from a uniform distribution. Because the pseudorandom
function is secure, the probability that the adversary can
distinguish the second game and the third game is neg-
ligible. This reduces our scheme to remote command
execution in [12]. That is, our scheme is secure if remote
command execution is secure.

Theorem 2. Let H be a random oracle, 3R-PoOR is
uncheatable if the keyed-hash message authentication code
is secure.

Proof. (sketch) Because the keyed-hash message authen-
tication code is secure, the adversary cannot forge a valid
output without the help of the valid input. In Definition 4,
the files have high min-entropy; thus, even if the adversary
queries parts of the file, the challenged blocks still contain
unknown block with high probability.

Obviously, the security guarantee of 3R-PoOR on
uncheatability is weaker than the schemes in [11]. To
achieve higher security, we can employ a Merkle tree as
[11] does that also leads to a higher cost.

Theorem 3. 3R-PoOR is unforgeable if the pseudoran-
dom function is secure.

Proof. (sketch) This proof consists of two parts. The first
part proves that the adversary cannot generate a valid proof
except it uses the correct blocks and tags, and an extrac-
tor can extract the challenged blocks from the valid proof.
The second part proves that there exist sufficient blocks to
recover the original file if the verification succeeds.

To prove the first part, we employ a series of games. The
first game is exactly the same with the forge game. In the
second game, the hash values are chosen from a uniform
distribution, which indicates the hash function is viewed
as the random oracle. Thus, the probability that the adver-
sary can distinguish the first game and the second game is
negligible. In the third game, the tags are chosen from a
uniform distribution. Because the pseudorandom function
is secure, the probability that the adversary can distinguish
the second game and the third game is negligible. In the last
game, we can conclude the adversary who returns unex-
pected response. At last, we can prove that a valid proof is
always obtained from the correct blocks and tags. Then an
extractor can solve a system of linear equations to extract
the challenged blocks. The extractor can gain sufficient
blocks in polynomial time with non-negligible probability.

To prove the second part, we just need to examine the
capability of code. The threshold value ı provides the
guarantee that there are sufficient blocks with overwhelm-
ing probability if the verification succeeds. Because the
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coefficients are sufficiently large, we can recover the orig-
inal blocks with overwhelming probability.

Theorem 4. 3R-PoOR is perfectly unidentifiable.

Proof. (sketch) Because k in the encoding algorithm and
r0, r1 in the ownership checking protocol and the retriev-
ability checking protocol are chosen from a uniform dis-
tribution, every client can obtain the same output with the
same probability. As a result, the adversary cannot deter-
mine who it is interacting with from the distribution of
output.

6.2. Detection probability analysis

Our 3R-PoOR scheme provides the probabilistic guaran-
tees of files ownership and data integrity. Now, we analyze
the detection probability in the ownership checking proto-
col and the retrievability checking protocol.

On one hand, we concern the probability that the server
succeeds in the ownership checking protocol. On the other
hand, we pay attention to the probability that the client
succeeds in the retrievability checking protocol. However,
because these two protocols both utilize "random sam-
pling" to achieve misbehavior detection, the probabilistic
guarantees in the two phases are identical.

Suppose the original file F is divided into n blocks,
out of which x blocks are missed. Let b be the number of
queried blocks in a challenge. Let X be a discrete random
variable that denotes the number of missed blocks that have
been detected. PX is defined to represent the probability
that at least one of the missed blocks is detected. So, we
have

PX = P{X � 1} = 1 – P{X = 0}

= 1 –
Cb

n–x

Cb
n

= 1 –
b–1Y
i=0

n – x – i

n – i

It follows that

1 –
�

1 –
x

n

�b
� PX � 1 –

�
1 –

x

n – (b – 1)

�b

Generally, b – 1 � n, and then the two sides of the
inequation are approximately equal. Therefore, we can
have

PX � 1 –
�

1 –
x

n

�b

In this way, the approximate minimum b queried in a
challenge can be expressed as

b = dlog1– x
n

(1 – PX)e

When x is a fraction of n, the misbehavior can be
detected with a certain probability by querying a certain
amount of blocks in a challenge, which is independent of

Figure 6. The number of queried blocks for different values of t,
where PX = 99%.

the total number of file blocks. For example, to achieve the
detection probability PX = 99 %, 458, 90, 44, 28 blocks
should be asked for proof in a challenge, respectively, for
x = 1 %, 5%, 10%, 15% of n. Figure 6 plots b for differ-
ent values of n and x, when the detection probability PX is
99%.

7. PERFORMANCE EVALUATION

7.1. Theoretical analysis

In this section, we carry out a theoretical analysis of 3R-
PoOR scheme’s performance and compare it with three
other schemes: POW[11], proof of storage with deduplica-
tion (POSD)[26], and PDP[13]. For simplicity, in the rest
of this paper, we use Mul and Exp to denote the complex-
ity of one multiplication operation and one exponentiation
operation on Group G, respectively. Let H and XOR denote
the complexity of one hashing operation and one XOR
operation, respectively. n is the number of blocks in an
original file, s is the number of sectors in each block, and
b is the number of blocks required in a challenge.

7.1.1. Storage cost analysis.

The extra storage cost at the server-side includes two
parts: the coded blocks and the authenticator. The number
of coded blocks depends on the size of � , which is related
to the fault-tolerant ability of scheme. Because the size of
a tag is as large as a data block, the storage cost of tags is
O(n). To reduce the storage cost of the tags, we can divide
each block into 64 sectors. Consequently, for a 4 KB block,
the tag is only 64 bytes. And the authenticator is almost
18 MB for a 1 GB file. Figure 7 presents the server-side
extra storage cost for different file sizes and different val-
ues of � . As shown in Figure 7, the extra storage cost at the
server-side is proportional to the file size and to the value
of � . When � = 0.10n, the total extra storage cost at the
server-side is 120 MB for a 1 GB file.
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Figure 7. The extra storage cost at the server-side for different file size. The n is the number of blocks in the original file, and �
denotes the number of coded blocks.

Table I. Theoretical analysis and comparison of performance.

3R-PoOR POW[11] POSD[26] PDP[13]

Privacy preserving yes no no no

Ownership checking yes yes yes no

Retrievability checking yes no yes yes

Random block accessing yes yes yes yes

Remote repairing yes no no no

OCheck comp.cost(client) O(b)H + O(b)XOR O(n2)H O(bs)Mul N/A

OCheck comp.cost(server) O(b)H + O(b)XOR O(b log n)H O(bs)Mul + O(b)Exp N/A

OCheck comm.cost O(1) O(b log n) O(s) N/A

RCheck comp.cost(server) O(b)Mul N/A O(bs)Mul + O(b)Exp O(b)Mul + O(b)Exp

RCheck comp.cost(client) O(b)Mul + O(1)XOR N/A O(bs)Mul + O(b)Exp O(b)Mul + O(b)Exp

RCheck comm.cost O(1) N/A O(s + b) O(1)

3R-PoOR, randomized proof of ownership and retrievability with remote repairing; POW, proof of ownership; POSD, proof of

storage with deduplication; PDP, provable data possession.

7.1.2. Computing cost analysis.

In 3R-PoOR of our scheme, the initialization algorithm
and the encoding algorithm are prepossessing procedures,
which can be performed by the data owner off-line and will
not influence the real-time performance. In the ownership
checking protocol, to generate a proof of file ownership,
the client has to perform bH and bXOR operations. The
server then verifies the accuracy of the ownership proof
with bH + (b – 1) XOR operations. In the retrievability
checking protocol, 2bMul operations need to be conducted
by the server to produce the integrity proof. On receiving
the proof, the client needs to perform 1XOR + (b + 1)Mul
operations to check the data integrity.

Now, we compare our 3R-PoOR scheme with PDP,
POW, POSD and show the results in Table I. The client
has to conduct O(n2)H operations to generate the proof in
POW, and the computing cost of server to check the proof
is O(b log n)H, while our 3R-PoOR scheme just needs
O(b)H + O(b)XOR operations for both the client-side and
the server-side in ownership checking phase. In POSD, to
prove the proof, O(bs)Mul + O(b)Exp operations need to
be conducted for both ownership checking and retrievabil-
ity checking, which makes the computing complexity high.

Considering only the retrievability checking process, PDP
requires O(b)Mul + O(b)Exp computing cost at the client-
side and server-side, which is higher than our 3R-PoOR
scheme.

7.1.3. Communication cost analysis.

The communication cost in 3R-PoOR scheme is mainly
caused by the challenging message and the proof informa-
tion in the ownership checking protocol and the retrievabil-
ity checking protocol. However, the challenging message
is constant, the cost of which is O(1) and can be ignored. In
the ownership checking protocol, the client sends the own-
ership proof {v} to the server, where v is a constant value
generated by hash operations. Thus, the communication
cost of this phase is O(1). In the retrievability checking pro-
tocol, the size of an integrity proof {t, �, r, s} is |m|+|t|+2|p|
bits, where |m| is the size of a block, |t| is the size of a
tag, |p| is the size of an element of G or Zp. Therefore,
the communication complexity of retrievability checking
in our scheme is also O(1).

We now compare our 3R-PoOR scheme with PDP,
POW, POSD and summerize the results in Table I. In POW,
to prove the file ownership, the client has to send the
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hash values of sibling nodes for each queried block to the
server, which incurs the communication cost as O(b log n).
In POSD, the ownership proof includes s aggregated data
blocks, so the communication overhead is O(s). The com-
munication cost of retrievability checking in POSD is
O(b + s). However, our 3R-PoOR scheme achieves O(1)
communication complexity for both ownership checking
and retrievability checking. The communication cost of
retrievability checking in PDP is also O(1), but PDP cannot
support ownership checking.

7.1.4. Repairing cost analysis.

At last, we analyze the cost in the repairing protocol. In
our scheme, to repair one block, the server just needs to
access ˇ blocks and executes ˇMul operations. It is much
smaller than the eraser code based solutions, in which
the server needs to access n blocks. On the other hand,
the process of repairing is achieved at the server-side in
our scheme. Consequently, the server need not send the n
blocks to the data owner and just proves the integrity of
the ˇ blocks used in remote repairing, which reduces the
communication cost efficiently.

7.2. Experimental results

To show that our proposed 3R-PoOR scheme is efficient
and scalable, we conducted experiments on a computer
with Intel 2.8 GHz central processing unit and 4 GB mem-
ory using JAVA. As a basis for comparison, we have also
implemented the schemes of Halevi, et al. [11] (POW),
Zheng, et al. [26] (POSD), and Ateniese, et al. [13] (PDP).
In our implementation, � = 0.10n, which indicates the size
of the encoded file, grows 10% with the original file. We
set the size of each data block as 4 KB in our experiments.
All experimental results represent the mean of 20 trials.

Figure 8. The computational cost comparison of ownership
checking for different file sizes. 3R-PoOR, randomized proof of
ownership and retrievability with remote repairing; POW, proof

of ownership; POSD, proof of storage with deduplication.

We estimate the running time in terms of two phases:
ownership checking and retrievability checking. However,
the input/output time to access the challenging blocks from
disks is out of consideration in our experiments, which
increases with the number of file blocks. Figure 8 indi-
cates the computing time of ownership checking process
for different file sizes in 3R-PoOR, POW, and POSD. To
show the efficiency of our 3R-PoOR scheme, we change
the size of files from 32 MB to 1 GB and keep the num-
ber of challenging blocks as 20. As shown in Figure 8, the
computing time of POW is proportional to the size of files,
while the computing time of 3R-PoOR and POSD both
are constant. Compared with POSD, our 3R-PoOR scheme
takes less time, which is consistent with our theory analy-
sis. Figure 9 indicates the computational cost of client-side

Figure 9. The computational cost of proving and verification in
the ownership checking protocol. 3R-PoOR, randomized proof of
ownership and retrievability with remote repairing; POW, proof

of ownership; POSD, proof of storage with deduplication.

Figure 10. The computational cost comparison of retrievabil-
ity checking for different file sizes. 3R-PoOR, randomized proof
of ownership and retrievability with remote repairing; PDP,
provable data possession; POSD, proof of storage with dedupli-

cation.
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and server-side in the ownership checking protocol, where
the size of file is 1 GB. The computing time of gener-
ating proof in POW and POSD is much higher than that
in our 3R-PoOR scheme, because POW asks to construct
the Merkle tree and POSD employs exponent calculation
in this phase. The total computational cost of ownership
checking in 3R-PoOR is only about 3 s for a 1 GB file.

Figure 10 depicts the computing time of retrievability
checking process for different files in 3R-PoOR, PDP, and
POSD . In order to achieve a higher detection probability,
we set the number of challenging blocks in retrievability
checking process as 480. From Figure 10, we can observe
that the size of files has no influence on the performance of
the three schemes when the number of challenging blocks
is fixed. Among the three schemes, however, our 3R-PoOR
spends the minimal time in the retrievability checking
phase. Figure 11 compares the computational cost of 3R-
PoOR, PDP, and POSD at client-side and server-side when
the file size is 1 GB. The time spent to verify the proof
in 3R-PoOR is 150 in our experiments, which is a little
higher than PDP, and much less than POSD. Additionally,
our 3R-PoOR scheme just spends around 330 ms to gen-
erate the integrity proof, which significantly outperforms
PDP and POSD. To estimate the performance of 3R-PoOR
with different challenging blocks, we vary the number of
challenging blocks from 100 to 500, where the file size is
1 GB. As shown in Figure 12, when the size of file is fixed,
the computing time increases with the number of challeng-
ing blocks in 3R-PoOR, PDP, and POSD. However, when
the two parameters are same, our scheme takes less time
than PDP and POSD.

Finally, we present the communication cost comparison
for a 1 GB file in Table II, where the number of challenging
blocks in OCheck and RCheck is 20 and 480, respec-
tively. It can be shown that our 3R-PoOR scheme just
needs to send 32 bytes in the process of ownership check-
ing, which is the minimal communication overhead among
these schemes. As POW has to send the sibling nodes for

Figure 11. The computational cost of proving and verification
in the retrievability checking protocol. 3R-PoOR, randomized
proof of ownership and retrievability with remote repairing;
PDP, provable data possession; POSD, proof of storage with

deduplication.

Figure 12. The computational cost comparison of retrievabil-
ity checking for different queried blocks. 3R-PoOR, randomized
proof of ownership and retrievability with remote repairing;
PDP, provable data possession; POSD, proof of storage with

deduplication.

Table II. The communication cost comparison for 1 GB file
(byte).

3R-PoOR POW POSD PDP

OCheck comm.cost 32 8960 4096 –
RCheck comm.cost 4485 – 35 008 96

3R-PoOR, randomized proof of ownership and retrievability with remote

repairing; POW, proof of ownership; POSD, proof of storage with dedupli-

cation; PDP, provable data possession.

each path as discussed in Section 7.1, the communication
cost in POW is the highest. For retrievability checking, the
communication overhead of 3R-PoOR is higher than PDP,
but PDP only supports integrity checking of storage data.

8. CONCLUSION

In this paper, we introduce the comprehensive require-
ments in the cloud storage systems, which include
data confidentiality, secure cross-user deduplication at
the client-side, file retrievability, ownership privacy-
preserving, random block accessing, and remote repairing.
Based on these requirements, we propose the model of
message-locked PoOR with remote repairing with formal
security definitions. We also propose a construction called
3R-PoOR and prove its security under the random oracle
model. To the best of our knowledge, it is the first construc-
tion that satisfies all the requirements simultaneously. The
experimental results show that our construction is efficient
in practice.
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