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Abstract—Recent real-world attacks against Certification Au-
thorities (CAs) and fraudulently issued certificates arouse the
public to rethink the security of public key infrastructure for
web-based connections. To distribute the trust of CAs, notaries,
as an independent party, are introduced to record certificates, and
a client can request an audit proof of certificates from notaries
directly. However, there are two challenges. On one hand, existing
works consider the security of notaries insufficiently. Due to lack
of systematic mutual verification, notaries might bring safety
bottlenecks. On the other hand, the service of these works is
not sustainable, when any party leaks its private key or fails.
In this paper, we propose a Tripartite Public Key Infrastructure
(TriPKI), using Certificates Authorities, Integrity Log Servers,
and Domain Name Servers, to provide a basis for establishing
secure SSL/TLS connections. Specifically, we apply checks-and
balances among those three parties in the structure to make
them verify mutually, which avoids any single party compromise.
Furthermore, we design a collaborative certificate management
scheme to provide sustainable services. The security analysis and
experiment results demonstrate that our scheme is suitable for
practical usage with moderate overhead.

Index Terms—Public Key Infrastructure; DNS-based; Mutual
Verification

I. INTRODUCTION

Transport Layer Security (TLS) and its predecessor Secure

Socket Layer (SSL) are two most popular cryptographic pro-

tocols that provide communication security over a computer

network. Nowadays, secure web-based connections through

SSL/TLS have been globally adopted in various online ser-

vices, e.g. e-business, e-banking, and e-government. Due to

its critical role in those services, SSL/TLS has captured great

attention from both attackers and researchers [1].

In SSL/TLS, authentication and secure connection establish-

ment are built based on Public Key Infrastructure (PKI), and

the core of PKI is the ecosystem of Certification Authorities

(CAs) which are responsible for issuing and maintaining

SSL certificates [2]. However, recent compelling real-world

attacks have demonstrated existing CAs’ vulnerability. For

example, some well-known CAs, TurkTrust [3], CNNIC [4],
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DSDtestProvider & eDellRoot [5] were reportedly compro-
mised, which means that their private keys are leaked or they

are out of control in some cases. Also, at least 500 SSL/TLS

server certificates were fraudulently issued for many famous

domains, e.g. mail.google.com, www.google.com,

login.yahoo.com, login.skype.com, login.liv-
e.com, and addons.mozilla.org. Meanwhile, due to

the lack of safety consciousness, many users tend to ignore

warnings of self-signed certificates from browsers. As a result,

these fraudulent and self-signed certificates can be used by

adversaries to mount Man-in-the-Middle (MitM) attacks.

To solve such security issues of PKIs in SSL/TLS, re-

searchers have designed a variety of proposals, which can

be generally classified into two categories: non-notary-based
and notary-based. Non-notary-based schemes mainly focus

on defining certificate policies and further managing CAs

to enhance system security, where the validity of certificates

depends on the confidence level of CAs. In contrast, notary-

based schemes distribute trust in CAs via employing notaries

to validate certificates issued by CAs. Obviously, introduc-

ing notaries can further assist in detecting the compromised

CAs. In 2013, Kim et al. [6] proposed an Accountable Key

Infrastructure (AKI), which utilized a set of notaries to check

certificates’ authenticity and validity, as well as to provide

certificate revocation mechanism. In 2014, based on AKI,

Basin et al. [7] designed an Attack Resilient Public-Key

Infrastructure (ARPKI) which improved security by using

multiple CAs to sign and validate certificates in a serial mode.

However, there still exist two challenges. First, most of

notary-based schemes heavily rely on notaries/validators for

validating certificates and verifying CAs’ behaviors. However,

the employed notaries’ security is not systematically discussed.

More specifically, these schemes consider mutual verification
insufficiently. Second, if any assigned CA is compromised or

damaged physically, the serving PKI will be corrupted and

the whole system needs to be reset. Even though ARPKI [7]

adopts multiple CAs as an authentication chain to avoid single

point of failure, the chain will be rebuild when a CA is

compromised. Therefore, these CAs may become potential

targets of Denial of Service (DoS) attacks. Thus, sustainable
service is still missing. Besides, multi-signature schemes can

be utilized to solve the single point failure. However, these

schemes such as Batch Identification Game Model (BIGM) [8]

can not provide adjustable trust.

To tackle these challenges, in this paper, we propose a

Tripartite Public Key Infrastructure (TriPKI) for secure web-

based connections. The main idea is to apply checks-and-
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balances strategy to make different parties verify mutually.

Specifically, inspired by DANE [9], besides CAs (issuing,

updating, and revoking certificates) and ILSs (Integrity Log

Severs, auditing certificates), we utilize Domain Name Sys-

tems (DNSs) as the third party to form this tripartite PKI

for certificate management. In our scheme, DNSs assist

CAs to manage certificates and verify other parties’ behav-

iors. Instead of protecting DNSs’ security separately as in

DNSSEC [10], system security is guaranteed by using the

checks-and-balances principle among CAs, ILSs, and DNSs.

Based on this design, any single party compromise can be

efficiently detected. Also, our infrastructure supports more

flexible mechanisms on certificate managements. The main

contributions are as follows.

• We first propose a novel TriPKI with DNSs, CAs, and

ILSs for secure web-based connections. The checks-and-

balances strategy is applied among those three parties

to effectively detect any single party compromise, which

enhances PKIs’ attack-resilience.

• We design a distributed collaborative certificate man-

agement scheme where each party consists of multiple

entities, and the trust of each party is distributed among

its entities. Unlike ARPKI [7], every entity in our scheme

is substitutable. Even if some entities are compromised or

failed, our scheme can still provide sustainable services

and tolerate service vulnerability.

• We prove the sustainable-service ability and security of

TriPKI in different cases.

• We implement a proof-of-concept prototype and evaluate

the performance of certificate operations in practice.

The reminder of the paper is organized as follows. In

Section II, we review the related work. Section III describes

system model, threat model, design goals, and preliminaries.

We present the details of our TriPKI at system level and

algorithm level in Section IV, and analyze the security of

TriPKI in Section V. Section VI evaluates the performance

of our scheme, and we conclude the paper in Section VII.

II. RELATED WORK

As the basis of SSL/TLS, the security issues of PKIs have

been studied extensively. As illustrated in Fig. 1, existing

schemes can be divided into two main categories: non-notary-
based and notary-based.

Fig. 1. Categories of PKI schemes

Non-notary-based approaches. Non-notary-based ap-

proaches enhance system security by improving certificate

policies and CAs’ management. Policy engine (PE) [11]

allows clients to make their own trust decisions on certificates,

rather than to rely on a global authority. This approach

can be viewed as a complement of other PKI approaches.

Individualized Set (IS) [12] permits a client to choose CAs

from a fixed individual set. CA Trust Manage System (CA-

TMS) [13] maintains a minimal set of trusted CAs by a

reputation system. Even though it reduces the possibility of

attacks, the solution for validating malicious certificates is

not provided. To prevent clients from establishing a SSL/TLS

connection with revoked certificates, Certificate Revocation

List (CRL) is employed [14].

Google pioneered a technology known as public-key pin-

ning which was first proposed in November 2011, and revised

in October 2014. The basic idea is that, whenever a browser

connects to a site using SSL/TLS, the site can claim that one

or several public keys are pinned for that domain. Pinning-

based schemes, such as Public Key Pinning (PKP) [15] has the

advantages of simplicity and easy deployment, whereas they

have a bootstrapping problem. For instance, an adversary can

lock out a legitimate owner of a site by pinning a fraudulent

public key when a client first visits the domain. To prop-

erly generalize public-key pinning to arbitrary domains, the

proposal called DNS-based Authentication of Named Entities

(DANE) [9] enables domain owners to assert some constraints,

i.e. a list of acceptable CAs for issuing domains’ certificates,

specific acceptable certificates, and specific trusted anchors to

validate certificates. Unfortunately, because of adhering to the

DNS hierarchy, DANE falls short of the non-hierarchical trust,

and its security depends on DNS SECurity (DNSSEC) [10] in

which the root DNS is a security bottleneck.

Notary-based approaches. Notary-based approaches em-

ploy extra resources, such as notaries, to distribute trust in

CAs for certificate validation. According to the function of

notaries, notary-based approaches can be further divided into

two subcategories: repository-based and log-server-based. In

repository-based approaches, repositories provide clients the

stored public keys or certificates to verify domains’ authentic-

ity. To resolve this online validation requirement, the Online

Certificate Status Protocol (OCSP) [16] allows clients to

check the domains’ certificate status by querying CAs’ OCSP

servers. However, with insufficient consideration, OCSP has

some flaws in the aspects of security, privacy, and efficiency,

which are respectively resolved by Perspecitves [17], Conver-

gence [18], and Short lived certificate (SLC) [19]. However,

all these approaches cannot record CAs’ behaviors which is

an important clue for detecting the security breaches of PKIs.

In log-server-based approaches, domain owners not only

record their certificates to public log servers, but also create ac-

countability for CAs’ actions [20]. For instance, in Sovereign

Keys (SK) [21], each domain owner signs its SSL/TLS public

key by a sovereign key pair, and this behavior is logged in a

timeline server which only allows read and append operations.

Whereas, it requires that the server must search the entire

database in response to the queries of each client, which

increases latency and sacrifices privacy. To improve the query

efficiency, Certificate Transparency (CT) [22] introduces a
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Merkle hash tree structure in log servers, and provides the

audit proof to clients for a SSL/TLS connection establishment.

However, CT does not consider how to handle the fraudulent

certificates issued by compromised CAs. Certificate Issuance

and Revocation Transparency (CIRT) [23] solves this problem

by proposing an efficient revocation mechanism for CT, but it

requires a client to change a new identity once its key is lost.

To distribute trust among independent entities, besides CAs

and notaries called Integrity Log Servers (ILSs), Accountable

Key Infrastructure (AKI) [6] also setups a validator to verify

ILS operations, and detect misbehaviors. However, without

sufficient mutual verification, the security of the ILSs and the

validator is vulnerable. PoliCert [24] extends the Accountable

Key Infrastructure by allowing domains to restrict their own

certificate properties of SSL/TLS connections. Nonetheless,

it still does not specify the mechanisms for detecting and

disseminating log misbehaviors. Attack Resilient Public-key

Infrastructure (ARPKI) [7] implements mutual verification

between CAs and ILSs by organizing these entities in a serial

mode, which requires that each entity provides a legal signa-

ture. However, it does not sufficiently consider the security of

validators. Moreover, the fixed sequential signature technique

extends the attack interface of PKIs. In another word, if

adversaries can compromise any entity, PKI service must be

terminated and rearranged. In this paper, TriPKI focuses on

designing a PKI with improved accountability, flexible mutual

verification, and sustainable service.

III. PROBLEM STATEMENT

A. System model

In our scheme, there exist three parties: CAs, ILSs, and

DNSs, to share the responsibility of managing certificates for

domains. The descriptions of each entity in different parties

of TriPKI are as follows.

• Domain. A named entity, with which clients desire to

establish secure connections, usually refers to a website.

Fig. 2. The framework of TriPKI

• Client. An entity who intends to establish TLS connec-

tions with a domain.

• Certification Authority (CA). An entity takes charge of

authorizing, updating, and revoking X.509 certificates.

Note that in TriPKI, multiple CAs authenticate domains

in a collaborative way.

• Integrity Log Server (ILS). Each ILS maintains an

integrity tree which logs certificates, and updates the tree

to keep consistent with each other. The integrity tree is

implemented as a Merkle hash tree [25], whose leaves

are the certificates of corresponding domains.

• Domain Name System (DNS). A DNS server takes

accountability for not only binding IP addresses and

domain names, but also assisting CAs and verifying CAs’

and ILSs’ misbehaviors.

As shown in Fig. 2, three parties compose the TriPKI system

and manage certificates collaboratively, while the main respon-

sibilities of CAs, DNSs, and ILSs are certificate management,

assistant management, and certificate audit, respectively. These

three parties form a triangle structure and verify the behaviors

mutually. In addition, the domain, CAs, and DNSs also con-

stitute a verification loop. Clients can challenge CAs or ILSs

for certificate validation determined by the three-way joint.

B. Threat model

From the practical perspective, our scheme should satisfy

security requirements in the case of the following threat model.

• Many famous CAs, e.g. CNNIC and eDellRoot, have

suffered attacks in the real world. Thus, we assume that

adversaries can compromise any entity.

• Adversaries can compromise multiple entities simultane-

ously. However, for a PKI that satisfies any nontrivial

security property, the number of compromised entities

should have some constraints. Especially, for CAs and

ILSs, the number of compromised entities should not

exceed their predefined threshold values.

• We also assume that adversaries can eavesdrop, tamper,

and forge messages, when entities communicate with

each other in untrusted networks.

C. Design goals

Our design goal is to develop a tripartite public key in-

frastructure to establish secure SSL/TLS connections between

domains and clients, which has the following properties.

• Mutual verification: The information flows among CAs,

DNSs, and ILSs form a loop, which means that the mis-

behaviors from any party will be detected. This checks-

and-balances framework always protects the system from

attacks launched by any compromised party.

• Sustainable-service: Each entity in any party only has

limited trust, and can be replaced by others. The whole

system continues working properly even if parts of enti-

ties are compromised or broken down.

• Random recruitment: The involved CAs and ILSs in

certificate management process are not fixed. Instead,

they are randomly selected and can be replaced. This can
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efficiently prevent adversaries from acquiring valuable

information and launching DoS attacks.

• Adjustable trust: The system is allowed to change

the number of entities in each party. Furthermore, the

system manager can assign and adjust trust in CAs and

DNSs at will, which determines the maximum quantity

of compromised CAs and DNSs.

D. Preliminaries

Definition 1: Discrete-Logarithm Assumption. Assume G

is a cyclic group of order q, g is a generator of G, and a

uniform b ∈ G. The discrete-logarithm problem is given g and

b to compute k = logg b. We say that the discrete-logarithm

assumption holds in the group G, if for all probabilistic

polynomial-time algorithms, the probability of solving this

problem is negligible.

Definition 2: (k, n)-Threshold Signature Algorithm. It

consists of three parts: threshold key generation Key_Gen,

threshold signature generation TSign_Gen, and threshold

signature verification TSign_Ver.

• Key_Gen: this is a randomized interactive protocol

which is run by each of n shareholders. With the input

of the global information I , the protocol returns the

group public key PK and a pair of (PKi, SKi) for each

shareholder.

• TSign_Gen: this is a randomized interactive protocol

divided into two parts: partial signature generation and

threshold signature generation. In the former one, the

process returns a parital signature σi, when taking I and

a message M as input. The latter takes I, {σ1, . . . , σk}
as input, outputs the threshold signature (σ,M).

• TSign_Ver: this is a deterministic algorithm with input

I , M , and σ. It returns 1 when (σ,M) is valid, or it

returns 0.

IV. TRIPKI: A TRIPARTITE PKI

A. Main idea

With the above discussion, we see that one-way supervision

or single sequential verification is vulnerable and inflexible. In

our opinion, a tripartite structure is a more stable framework

for mutual verification. Thus, besides CAs and ILSs, we

introduce DNSs as the third party into our framework with

the following considerations. First of all, since DNSs maintain

mapping information of network addresses and domains, they

are suitable to be used to assist certificate management.

Secondly, DNS servers are distributed in different physical

locations with different security configurations, which makes

it challenging for adversaries to compromise all DNSs. Thus,

our framework has good robustness. Thirdly, the mutual verifi-

cation among three parties can resist attacks even if all entities

in a single party are corrupted.

To further reduce trust dependency and enhance service

reliability, in TriPKI, all entities in each party are substitutable.

Our collaborative certificate management scheme not only

considers the cooperation between CAs and DNSs based

on threshold signature, but also achieves mutual verification

TABLE I
THE NOTATIONS IN TRIPKI

Notation Description
xi the ID of shareholder Ui

k, n the threshold value and the number of shareholders
fi(x) a k − 1 degree polynomial selected by Ui

λi λi =
∑n

j=1 fj(xi)
hi, di random numbers selected by Ui in the process of

Key_Gen and PSign_Gen
ri ri = ghi which is calculated by Ui and broadcasted to

other n− 1 shareholders.
R R =

∏n
i=1 ri mod p, all shareholders own it.

PKi, SKi the public key and the private key of a shareholder Ui.
PK the public key of the group.
T a set of shareholders who participate in the process of

threshold signature generation
Ci Lagrangian interpolation coefficient of xi

σi the partial signature generated by Ui

M the message needs to be signed
σ the threshold signature composed by k partial signatures

l,m,w the number of the CAs, DNSs, and ILSs.
{·}

K−1
i

a message signed by the private key of user i

{·}σk−1 , {·}σk k − 1 and k threshold signature, respectively

among CAs, DNSs, and ILSs. The used notations in TriPKI

is described in TABLE I.

B. Certificate format

In our scheme, certificates contain several extensions over

standard X.509 certificates and feature the following additional

fields:

• CA List. The list of trusted CAs for certificate manage-

ment;

• ILS List. The list of trusted ILSs to log the certificate;

• DNS List. The list of trusted DNSs for assisting the

certificate management.

C. Collaborative certificate management scheme

For clarity, we present TriPKI in two levels: System Level
and Algorithm Level. The former describes the implementa-

tion of TriPKI including Initialization, authorization, update,

revocation, validation, and dynamic trust management. The

latter focuses on the algorithms which support the operations

at system level.

1) System level:
a) Initialization: The major construct of TriPKI consists

of l CAs, m DNSs, and w ILSs. The domain A chooses its

own CA List, DNS List, and ILS List from this group.

In our scheme, since CAs and DNSs are the shareholders

in the threshold signature algorithm, the total amount of

shareholders in the algorithm is n = l +m and the threshold

value is k (k ≤ n). These shareholders select three public

parameters: big primes p, q (q is a prime factor of p − 1),

and a generator g (the order of g is q in the Zp). Then, they

run Key_Gen (described in Section IV-C2a) to generate some

initial information, such as their own public and private key

pairs, such as (PKCAi
, SKCAi

) and (PKDNSi
, SKDNSi

),
and the group public key PK. To resist MitM attacks, we also

utilize the RSA-2048 algorithm in some steps. Besides their

own RSA private keys, e.g. K−1
CAi

, K−1
DNSi

, and K−1
ILSi

, CAs,
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Fig. 3. The information flows in TriPKI

DNSs, and ILSs are equipped with RSA public keys of all

CAs, DNSs, ILSs, e.g. KCAi
, KDNSi

, and KILSi
. In addition,

domain A owns its public and private key pair (KA,K
−1
A ),

and all of the public keys mentioned above.

b) Certificate authorization: In TriPKI, the mutual veri-

fication occurs among two CAs, one DNS, and one ILS, repre-

sented as CA1, CA2, DNS1, and ILS1. The information flow

is exhibited in Fig. 3. According to the certificate operations,

this process can be divided into four stages.

Stage 1: Signature generation (step:1-3)
From Fig. 4, we observe that this stage includes three steps.

In step 1, domain A generates its certificate and assigns a

trusted CA denoted as CA1. Then, it sends a registration

request RegReq to all CAs and DNS1. After that, all of

the shareholders which have received RegReq ensure that

they are in CA list or DNS list and then authenticate the

identity of domain A. Furthermore, CA1 randomly selects

CA2 and other k − 2 CAs from CA List, and DNS1 from

DNS list. These CAs and DNS1 form a threshold signature

set T which contains k + 1 shareholders. By applying the

algorithm PSign_Gen (described in Section IV-C2b), all of

these k+1 shareholders generate their own partial signatures.

Then the k−2 CAs send their own partial signatures to CA1.

If these partial signatures are legal and correct, CA1 combines

them with its own partial signature to generate a (k − 1, n)-
threshold signature, which is {RegReq}σk−1 via TSign_Gen
(described in Section IV-C2d). Note that each partial signature

is verified by PSign_Ver (described in Section IV-C2c) and

the step will be terminated if there exists any verification

failure. In step 2, CA1 transmits the {RegReq}σk−1 to CA2

and DNS1. In step 3, if {RegReq}σk−1 is legal, CA2 and

DNS1 generate the full threshold signatures {RegReq}σk and

{RegReq}′σk , and send them to ILS1.

Stage 2: Certificate synchronization (step:4)
The main task in this stage is that ILS1 synchronizes

the new certificate among all ILSs. To provide the audit

Step 1:
1 A: Generate CertA
2 A → all CAs: RegReq = {CertA, CA1, CA2, DNS1,

ILS1}K
−1
A

A → DNS1: RegReq
3 CA1, DNS1: Ensure CA1 in CA List, verify the signature in

RegReq, and randomly select CAi in CA List
4 CAi → CA1: {RegReq}SKCAi

(single partial signature)

5 CA1: {RegReq}
σk−1 (k − 1 threshold signature)

Step 2:
6 CA1: Ensure CA2 in CA List and DNS1 in DNS List
7 CA1 → CA2: {RegReq}

σk−1

CA1 → DNS1: {RegReq}
σk−1

Step 3:
8 CA2, DNS1: get {RegReq}

σk , {RegReq}′
σk from

{RegReq}
σk−1 , then verify them

CA2, DNS1: Ensure ILS1 in ILS List
9 CA2 → ILS1: {RegReq}

σk

DNS1 → ILS1: {RegReq}′
σk

Fig. 4. Stage 1 - Signature generation

Step 4:
1 ILS1: Ensure ILS1 in ILS List, Verify signatures in

{RegReq}
σk and {RegReq}′

σk

2 ILS1 → ILSw : SynReq = {RegReq}
K

−1
ILS1

3 ILSw : verify signatures in SynReq,
Ensure no CertA is registered for domain A

4 ILSw → ILS1: SynResp = {H(RegReq)}
K

−1
ILSw

5 ILS1: collect SynResp from more than ξ ILSs
6 ILS1 → ILSw : SynCommit = {H(RegReq)}

K
−1
ILS1

7 ILSw → ILS1: SynAck = {H(RegReq)}
K

−1
ILSw

8 ILS1: collect SynAck from more than ξ ILSs
Accep = {H(CertA)}

K
−1
ILS1

Fig. 5. Stage 2 - Certificate synchronization

Step 5:
1 ILS1 → DNS1: RegConf =

{RegReq,Accept, List(SynAck)}
K

−1
ILS1

ILS1 → CA2: RegConf
Step 6:

2 DNS1, CA2: both of them verify RegConf , and record it, respectively.
3 DNS1 → A: {CertA, Accept}

K
−1
DNS1

Fig. 6. Stage 3 - Certificate distribution

proof, we store certificates in ILSs with Merkle hash trees

as in ARPKI [7]. The process of certificate synchronization

is shown in Fig. 5. After ILS1 receives {RegReq}σk and

{RegReq}′σk , it ensures itself in ILS List. Then, it estimates

the legality of the request by TSign_Ver (described in

Section IV-C2e) and checks the consistency of them. If the

verification succeeds, it broadcasts a synchronization request

SynReq to all ILSs. Until ILS1 receives ξ synchronization

responses SynResp, which means that they agree to store

the certificate, it broadcasts a synchronization commitment

SynCommit to inform all ILSs to store the certificate. The

synchronization process is completed when ILS1 obtains

synchronization acknowledgments SynAck from ξ ILSs, and

then it generates a notification to all ILSs.

Stage 3: Certificate distribution (step:5-6) This stage

includes two steps which are showed in Fig. 6. In step 5,

both DNS1 and CA2 receive the registration confirmation

RegConf from ILS1. To prove the consistency of ILSs, the

List(SynAck) is attached in RegConf . In step 6, if the
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Step 7:
1 A → CA2: RegChall = {{Accept}

K
−1
DNS1

, xc}K
−1
A

Step 8:
2 CA2 → A: RegResp = {{{Accept}

K
−1
DNS1

}
K

−1
CA2

, xc+1}
K

−1
CA2

Fig. 7. Stage 4 - Challenge and response

RegConf is legal, DNS1 and CA2 record it. Then, DNS1

signs and sends it to domain A.

Stage 4: Challenge and response (step:7-8)
In this stage, as shown in Fig. 7, domain A sends a

registration challenge RegChall signed by itself to CA2,

where RegChall consists of {Accept}K−1
DNS1

and a random

number xc. Then, CA2 returns a signed registration response

RegResp composed of {{Accept}K−1
DNS1

}K−1
CA2

and xc + 1.

After the above four stages, domain A can show a certificate

CertA with a legal signature to a client to establish a TLS

connection. In terms of this framework, the mutual verification

occurs in two triangle structures. One is among two CAs (e.g.

CA1 and CA2), DNS1, and ILS1, and the other is among

DNS1, domain A, and CA2.
c) Certificate update: This process is similar to the

process of certificate authorization. Before a certificate expires,

domain A generates a new key pair and a new certificate

Certu. It signs the new certificate with the old private key, and

starts an update request {CertA, {{Accept}K−1
DNS1

}K−1
CA2

,

Certu, CAi, CAj , DNSk, ILSu}K−1
A

, where CAi, CAj ,

DNSk, ILSu are the trusted entities designated by domain A
in CA List, DNS List, and ILS List. CAi, CAj , ILSu

can be different from CA1, CA2, ILS1, but DNSk must be

the same as DNS1 to maintain the consistency of certificates

between the DNS and ILSs. Note that {{Accept}K−1
DNS1

}K−1
CA2

is signed by CA2, DNS1, and ILS1 in the process of

certificate authorization, and it is the legality proof of the

old certificate CertA. After the mutual verification, if all

operations are correct, domain A can receive a new signature

for the new certificate Certu while all ILSs and DNS1 update

the certificate uniformly.
d) Certificate revocation: When a domain’s private key

is compromised or lost, its certificate should be removed,

and a notification of certificate revocation needs to be sent

to TriPKI system. Generally, in this case, if a malicious

certificate is claimed and the authenticity of the notification

is confirmed by k random CAs, these CAs will launch

the mutual verification as the process of certification autho-

rization, while the goal is to abolish the malicious certifi-

cate. Specially, the RegReq turns into a revocation request

RevReq, although the content is the same, e.g. RevReq =
{CertA, CA1, CA2, DNS1, ILS1}K−1

A
. As a result, all ILSs

and the corresponding DNS delete the record of the malicious

certificate in their Merkle hash trees, respectively.
e) Certificate validation: If a client tries to establish

a TLS connection with a domain A for the first time, it

should validate CertA in three aspects: (1) CertA is signed by

the entities in CA List and DNS List, (2) CertA has not

expired (CertA is stored in merkle hash tree), (3) the threshold

signature of RegReqσk is correct. The client can send a

certificate validation challenge to DNS1 and an ILS. On one

hand, if DNS1 has authorized and distributed this certificate,

it returns a response about the certifcate threshold signature to

the client. On the other hand, the ILS will return the root hash

and auxiliary hashes of the merkle hash tree if the certificate

has been stored. If both of the validation responses are correct,

the client can establish a security connection with domain

A. Thus, TriPKI can prevent single compromised entity from

deceiving the client with a forged validation response. To

maintain the consistency of DNSs’ certificate records, DNSs

should execute the synchronize process as ILSs at intervals.

f) Dynamic trust management: Besides fraudulent cer-

tificates, entities in TriPKI also may fail or become a target

of attacks. Thus, the dynamic trust management is necessary,

which allows to distribute trust to corresponding entities on

demand in terms of shareholders’ secret information.

We mainly consider two cases. One case is that TriPKI may

adjust the security level with the actual demand. For example,

if we intend to achieve the maximum security level, we can

request all shareholders to participate in certificate manage-

ment. The minimum requirement of the mutual verification

needs two CAs and one DNS. To implement this function,

each shareholder needs to recalculate its secret information

by Threshold_Up (described in Section IV-C2f). The other

case is that some entities join or exit TriPKI due to system

expansion or entities’ compromise or failure. If the transfor-

mation only occurs in ILSs, it is easy to add or delete some

ILS servers directly. However, if it happens in CAs and DNSs

parties, the secret information of each shareholder should be

updated by Membership_Up (described in Section IV-C2g).

2) Algorithm level: Algorithm level is implemented based

on [26], which presents a generic construction of threshold

signature schemes. Due to the compromising risk of each

entity, our implementation has no trusted dealer. The op-

erations include seven algorithms: Key_Gen, PSign_Gen,

PSign_Ver, TSign_Gen, TSign_Ver, Threshold_Up,

Membership_Up.

a) Key Gen: Firstly, every shareholder selects an public

ID xi and a k − 1 degree polynomial fi(x) mod q, then

calculates λi,j = fi(xj) mod q (j ∈ {1, . . . , n}) for other

n − 1 shareholders and broadcasts them and keeps λi,i for

itself. After Ui receives all λj,i, it can get

λi =
n∑

j=1

λj,i mod q =
n∑

j=1

fj(xi) mod q, (1)

Now, we define a new function F (x) =
∑n

i=1 fi(x) mod q,

and each Ui can get λi = F (xi). Ui selects a random number

hi from {1, . . . , q − 1}, and computes SKi = λihi mod q
as its private key, PKi = gSKi mod p as its public key.

Ui gets ri = ghi mod p, and broadcasts it to other share-

holders. Every shareholder can get R =
∏n

i=1 ri mod p. k

shareholders can recover F (0) = [
∑k

i=1 F (xi) · Ci] mod q,

Ci =
∏k

j=1,j �=i
(−xj)

(xi−xj)
. PK = gF (0) × R mod p acts as the

group public key.
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b) PSign Gen: The shareholders, who participate in the

threshold signature generation process, compose a set T . Each

of them selects a random number di from {1, . . . , q − 1}. Ui

can calculate Di = gdi mod p, vi = gdi×h−1
i mod p, where

h−1
i is an inverse element of hi in a prime field Zp. Each Ui

broadcasts Di and vi to other shareholders. Then, Ui can get

V =
∏

Uj∈T vj mod p.

Through the congruence hisi = (hiλiCi) × h(M) − V ×
di mod q, si could be deduced as follows:

si = (λiCi)× h(M)− V × di × h−1
i mod q, (2)

where Ci is the Lagrangian interpolation coefficient, and h(·)
is a one-way hash function. Ui sends the partial signature σi =
(M, ri, si, PKi, Di, i) to the designated combiner. Note that

i is used to deduce Ci and to determine the signer’s identity.

c) PSign Ver: The combiner can verify the σi by the

following equation.

rsii (Di)
V ?
= (PKi)

h(M)Ci mod p. (3)

d) TSign Gen: After receiving all σi, the combiner

generates the combination of them by equation (4).

S =
k∑

i=1

si =
∑

Ui∈T

(λiCi)h(M)− V
∑

Ui∈T

(dih
−1
i ) mod q.

(4)

The threshold signature is σ = (M,S, V,R).
e) TSign Ver: Everyone can verify the threshold signa-

ture by the following equation:

gSV V ?
= (PK ×R−1)h(M) mod p. (5)

where R−1 is an inverse element of R in Zp.

f) Threshold Up: This algorithm can adjust the thresh-

old value k as follows.

• The group shareholder Ui selects a ϕ− 1 degree polyno-

mial f ′
i(x) mod q, and then calculates λ′

i,j = f ′
i(xj) mod

q (j ∈ {1, . . . , n}) for other shareholders and broadcasts

them. Every shareholder calculates λ′
i as equation (1).

• Every shareholder updates F ′(x) and gets its new public

and private keys by PK ′
i = gSK′

i mod p and SK ′
i =

λ′
ihi mod q.

• ϕ shareholders can recover F ′(0). Then the group public

and private keys can be replaced by PK ′ = gF
′(0) ×

R mod p.

After these steps, the threshold value k is replaced by ϕ.

In addition, the parameters v
′
i = gd

′
i×(hi)

−1

mod p, V
′
=∏

Uj∈S v
′
j mod p also need to be updated in partially signature

generation stage.

g) Membership Up: To simplify description, we assume

that the joined shareholder is Uu and its ID is xu.

• Uu exchanges λu,j with each Uj . Then all of them update

their λ′
j = λj + λu,j , Uu gets λu =

∑n′

j=1 λj,u.

• Uu generates its private key: SKu = λu · hu mod q and

the public key: PKu = gSKu mod p. Every shareholder

updates its private and public key pair by SK ′
i =

λ′
ihi mod q and PK ′

i = gSK′
i mod p. Uu broadcasts ru

with its signature to other shareholders.

• Every shareholder verifies ru and updates R by R
′
=

R · ru. Uu randomly selects a shareholder to request the

current R for calculating its own R
′
.

• F
′
(x) also needs to be updated by F

′
(x) = F (x) +

fu(x) mod q. The current group public key is replaced

by PK = gF
′
(0) × R

′
mod p, where F

′
(0) also should

be updated.

V. SECURITY ANALYSIS

Lemma 1: In TriPKI, if discrete-logarithm problem is hard,

a probabilistic polynomial-time (PPT) adversary cannot attack

our threshold signature scheme. In other words, it cannot forge

a partial or a group signature.

Proof: We assume that a PPT adversary tries to forge

a partial signature σ̃i to pass the validation in algorithm

PSign_Ver. From the algorithm Key_Gen, we can deduce

the relationship between PKi and ri (PKi = rλi
i mod p).

Furthermore, the other parameters (Di, PKi, i) are in public,

and therefore the adversary can only fabricate s̃i for a forged

σ̃i. This problem is reduced to the discrete-logarithm problem

according to the equation (3). Based on Definition 1, therefore,

the adversary can only forge a partial signature with a neg-

ligible probability. Similarly, if the adversary aims to forge a

threshold signature σ̃ directly, it should generate S̃. However,

the difficulty of this task is also equivalent to solving discrete

logarithm problem. In conclusion, a PPT adversary cannot

forge a partial or a threshold signature.

Theorem 1: Since TriPKI achieves mutual verification, as

a result, it can resist all entities’ compromises in any single

party under the threat model in section III-B.

Proof: We analyze the attack-resilience ability of the three

parties in TriPKI, respectively.

a) CAs party compromised
Let us consider the worst situation, in which all CAs

are compromised to generate a certificate registration request

RegReq = {CertA, CA1, CA2, DNS1, ILS1} for a mali-

cious domain A. Since the number of compromised CAs is

equal to l (l ≥ k), obviously, CA1 can generate a malicious

{RegReq}σk−1 and send it to DNS1. As shown in Fig. 3,

as well as CA2, DNS1 can verify the signature in RegReq
and check the identity of the domain A. Then, it will detect

this malicious domain and terminate this certificate registration

request. Furthermore, ILS1 receives two RegReq from CA2

and DNS1 respectively. By comparing these two certificate

registration requests and verifying the signatures, ILS1 can

find the error information. By tracing back, the corrupted

CA2 will be detected. Thus, TriPKI can resist all entities’

compromises in the CAs party.

b) DNSs party compromised
In TriPKI, only one DNS is involved in certificate man-

agement, but m DNSs participate in the initialization process

as substitutions. As shown in Fig. 2, there are two mutual

verification loops involved with DNS. In other words, the

misbehaviors of DNS1 will be detected. For instance, ILS1
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can verify DNS1’s behaviors by comparing {RegReq}σk

with {RegReq}′σk and validating the signatures after step

3 in stage 1. Domain A checks the DNS1’s operations

by challenging CA2. Hence, TriPKI can resist all entities’

compromises in the DNSs party.

c) ILSs party compromised
ILSs’ duty is to synchronize certificates and provide certifi-

cate audit proofs to the client. In the first case, ILS1 needs to

send a synchronization feedback to DNS1 and CA2. DNS1

and CA2 verify the feedbacks by comparing them with the

locally stored certifications. In other words, the misbehaviors

from ILS1 will be detected. In the second case, the client

can verify ILS1’s behaviors by requesting an audit proof from

DNS1. As a result, TriPKI can resist all entities’ compromises

in the ILSs party.

In conclusion, mutual verification provides a good improve-

ment in security for TriPKI.

Theorem 2: TriPKI can provide sustainable service when θ
CAs (θ < l), φ DNSs (φ < m), and ξ − 1 ILSs (ξ < w) are

compromised or failed at most, where ξ is the threshold value

of ILSs, θ + φ < min(n− k, k).
Proof: Based on Lemma 1, we learn that a PPT adver-

sary cannot forge a legal threshold signature. However, if it

compromises a CA, it can generate a legal partial signature

for a malicious domain. This behavior will be detected by

the combiner when it verifies the threshold signature. As

long as the number of the compromised CAs is θ < k − 1
(there is only one DNS participating in certificate registration),

and not all the DNSs are compromised, e.g. φ < m, the

adversary cannot generate a legal threshold signature for a

certificate from the malicious domain. Furthermore, in order

to guarantee that a legal threshold signature can be generated,

the number of normal shareholders should be not less than k.

Since the synchronization process requires ξ ILSs to reach an

agreement at least, malicious ILSs cannot achieve fraudulent

synchronization to break the system, if the number of them is

less than or equal to ξ − 1. As a result, TriPKI can provide

sustainable service when the numbers of malicious entities in

different parties are limited in these ranges.

VI. PERFORMANCE EVALUATION

A. Implementation

We implement TriPKI by the X.509 extension with addi-

tional fields described in Section IV-B. The main processes

of TriPKI are written in C++ and Bourne Again SHell

(BASH). The threshold signature algorithm is realized by

the GMP library and RSA-2048 operations invoke OpenSSL

(version 1.0.1p) APIs. We implement the domain by extending

an Apache HTTP server (version 2.4.7), create CAs with

OpenSSL, and establish DNSs by BIND9 (Berkeley Internet

Name Domain). ILS servers are carried out in python, where

they maintain Merkle hash trees by SHA-512 to record certifi-

cates, and provide audit proofs. We implement the client by

extending the chromium web browser, and establish connec-

tions using the TLS protocol. During client-server connections,

the server’s certificates are sent to the client in the handshake
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Fig. 8. The processing time of the main algorithms. (a) threshold value k
grows when n = 25. (b) n increases when k = 10.

TABLE II
THE PROCESSING TIME OF THE ENTITIES IN EACH STAGE (ms)

Init
Stage 1 Stage 2 Stage 3 Stage 4

PSign TSign Synch Distri Chall-Resp

CA1

3.54

0.92 0.13 – – –
CA2 0.90 0.23 – 6.15 16.98
CA3 0.91 – – – –
DNS1 0.92 0.22 – 17.02 –

ILS1 137
– – 34.09 – –

ILS2 – – 33.92 – –

process while confirmations are provided to the browser by

the existing Online Certificate State Protocol (OCSP). For

simplicity, entities in the same party are simulated in one

PC. Hence, the prototype is composed by five PCs with Intel

Celeron E4300 (2.6GHz) CPU, 4G RAM, and Ubuntu 14.04

64bit operation system.

B. Experiment Analysis

To evaluate the practicability of TriPKI, we analyze the

performance of our prototype in a real-world scenario.

First of all, to evaluate the influence of system’s trust level

and group size, we investigate the processing time of the

five main algorithms (Key_Gen, PSign_Gen, PSign_Ver,

TSign_Gen, and TSign_Ver) with different parameters.

In, Fig. 8(a), the threshold value k varies and the group

size n is fixed to 25. The processing time of Key_Gen
and TSign_Gen increases when k grows, and that of

PSign_Gen, PSign_Ver, and TSign_Ver keep stable at

a low level. The reason is that Key_Gen algorithm is respon-

sible for calculating k-degree polynomials, and TSign_Gen
algorithm combines k partial signatures. The other algorithms

have no additional computation overhead as k grows. As

the description in Section IV-C, the collaboration certificate

management scheme depends on those algorithms and k
determines the system’s trust level, thus, we can conclude

that the higher trust is required, the more processing time is

needed in the CAs party and DNSs party. In Fig. 8(b), the

threshold value k is fixed to 10 and the group size n changes.

All curves are stable, which means that the processing time of

those algorithms does not grow with the increasing group size.

This is because the degree of polynomials and the number of

partial signatures are constants when n grows.

Secondly, we measure the processing time of each entity in

every stage referring to Fig 3. In this experiment, we setup 1

domain, 3 CAs, 1 DNSs, and 2 ILSs, while a (3, 4)-threshold
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Fig. 9. The comparison of processing time

signature scheme is used. The results are the average values in

20 tests as shown in TABLE II. From this table, we can find

that the processing time in stage 1 is much shorter than that

in other stages. In fact, the computation cost in stage 1 stems

from our threshold signature algorithm, and those in other

stages are mainly induced by RSA. Thus, we can conclude that

the threshold signature algorithm has much lower computation

cost than RSA. In addition, from above data, we can estimate

that our system can generate 91 certificates per second, while,

in practice, the Electronic frontier foundation (EFF) only adds

2.05 certificates per minute on average into its database [11].

Obviously, DNSs have enough time to deal with their own

businesses. Thus, the practical effect of TriPKI is acceptable.

Thirdly, we compare the processing time between TriPKI

and ARPKI, which are the most relevant schemes, in the

aspects of certificate managements and network operations.

For ease of comparison, in Fig. 9(a), we compare the pro-

cessing time of three main operations (authorization, update,

validation) rather than different stages in various operations.

We can find that TriPKI has less processing time than ARPKI

in the first two certificate operations. The main reason is that

the two operations in TriPKI are conducted in a parallel mode,

while those in ARPKI are handled in a serial mode. Fig. 9(b)

shows the network latency with different number of CAs in

certificate authentication operation, while other two operations

have similar network interactions. In TriPKI, the number of

interactions among entities is constant when the number of

CAs rises, but that in ARPKI increases linearly. We can find

that when the amount of CAs meets some requirements (more

than 4 in our experiment), TriPKI has lower network latency

than ARPKI.

VII. CONCLUSION

To establish secure SSL/TLS connections, we proposed a

novel Tripartite Public Key Infrastructure (TriPKI) in this

paper. It applies a checks-and-balances strategy among CAs,

DNSs, and ILSs, to resist the compromise of any single party

which induces the weakest-link security problem in current

PKIs. We also design a distributed collaborative certificate

management scheme to distribute the trust of entities in the

three parties and enhance the attack-resilience and fault-

tolerance. The security proof and experiment results show

that TriPKI can stand against compromises and failures with

acceptable time consumption.
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